

STATE OF LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT OFFICE OF PUBLIC WORKS

WATER RESOURCES
TECHNICAL REPORT
NO. 28

GROUND-WATER RESOURCES OF THE ARCADIA-MINDEN AREA, LOUISIANA

Prepared by

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

In cooperation with LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT OFFICE OF PUBLIC WORKS 1982

STATE OF LOUISIANA

DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT

OFFICE OF PUBLIC WORKS

In cooperation with the

UNITED STATES GEOLOGICAL SURVEY

Water Resources
TECHNICAL REPORT NO. 28

GROUND-WATER RESOURCES OF THE ARCADIA-MINDEN AREA, LOUISIANA

Ву

G. N. Ryals U.S. Geological Survey

Published by

LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT

OFFICE OF PUBLIC WORKS

Baton Rouge, La.

1982

STATE OF LOUISIANA DAVID C. TREEN, Governor

DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT

PAUL J. HARDY, Secretary

OFFICE OF PUBLIC WORKS

I. F. "JIFF" HINGLE, Assistant Secretary

Cooperative projects with
UNITED STATES GEOLOGICAL SURVEY
DALLAS L. PECK, Director
Louisiana District
DARWIN KNOCHENMUS, Chief

CONTENTS

		With the Confidence of the Con	Y3
Classe			Page V
Grossar	У		. 1
Introdu	ichid)n	2
		gic setting	
Geobydr	olo	gic properties of the principal aquifers	
Wi T	COX	-Carrizo aquifer	
****	Γx	escription	
	H.	ydraulics, yield, and water levels	
	Oi	uality of water	
	Pi	resent and potential development	
Spa	irta	aquifer	12
4-	De	escription	12
	H	ydraulics and yield	· 13
	Wa	ater levels	· 14
	Ot	uality of water	· 18
	P	resent and potential development	- 18
Ter	race	e aquifer	• 19
Summary	and	d conclusions	- 20
Selecte	ed re	eferences	- 21
Hydrolo	ogic	data	- 23
		ILLUSTRATIONS	
		[Plates are at back]	
Plate	1.	Map showing location of wells and general geology of	
	2.	the Arcadia-Minden area, Louisiana. Geohydrologic maps of the Arcadia-Minden area,	
	۷.	Louisiana.	
	3.	Geologic sections of the Arcadia-Minden area,	
	٠,	Louisiana.	
		TMTDIMIM	Page
Figure	1.	Map showing potentiometric surface of the Wilcox-	
rryare		Carrizo aquifer	9
	2.	Map showing location of public water-supply systems and	=
	em 0	estimated pumpage, 1980	11
	3.	Map showing potentiometric surface of the Sparta	
	<u> </u>	aquifer, spring 1980	15
	4.	Hydrograph showing water-level trends in wells in the	
		Sparta aquifer	17

TABLES

			Page
Table	1.	Ground-water pumpage in the Arcadia-Minden area	3
	2.	Geohydrologic units in the Arcadia-Minden area,	
	3.	Hydraulic conductivity determined from tests of wells	5
		screened in the Wilcox-Carrizo aquifer	8
	4.	Summary of chemical and physical properties of water from the Wilcox-Carrizo aquifer	10
ı	5.		13
	6.		18
	7.	Description of selected wells in the Arcadia-Minden	24
	8.	Chemical analyses of water from selected wells in the Arcadia-Minden area	30
	9.	Availability of ground water at population centers	32
	10.	Petroleum wells and test wells used for geologic	
		control	33

GLOSSARY

Aquifer

A formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Artesian aquifer

An aquifer in which water is confined by an overlying clay or finegrained bed. Water levels in wells screened in the aquifer rise above the top of the aquifer.

Confining bed

A body of relatively "impermeable" material stratigraphically adjacent to one or more aquifers that serve to confine water in the aquifer so that the water level rises above the base of the confining bed.

Hardness

The U.S. Geological Survey classifies hardness as follows: Water having a hardness of 0-60 mg/L is considered soft, 61-120 mg/L is moderately hard, 121-180 mg/L is hard, and more than 180 mg/L is very hard.

Hydraulic conductivity

The volume of water at the existing kinematic viscosity that will move through a unit area of an isotropic porous medium in unit time under a unit hydraulic gradient through a unit area measured at right angles to the direction of flow. Replaces the term "field coefficient of permeability."

Potentiometric surface

A surface, as related to an aquifer, that everywhere coincides with the water level in tightly cased wells penetrating the aquifer.

Specific capacity

The rate of discharge of water from a well divided by the drawdown of water level within the well expressed as gallons per minute per foot of drawdown for a specified period of pumping, usually 24 hours. Specific yield

The ratio of the volume of water that will drain by gravity from saturated aquifer material to the total volume of the material.

Storage coefficient

The volume of water an aquifer releases from or takes into storage per unit surface area of the aquifer per unit change in the head.

Transmissivity

The rate at which water of the prevailing kinematic viscosity is transmitted through a unit width of the aquifer under a unit hydraulic gradient. It is equal to an integration of the hydraulic conductivities across the saturated part of the aquifer perpendicular to the flow paths. Replaces the term "transmissibility."

Water-table aquifer

An aquifer in which the water table or upper surface of the zone of saturation is unconfined.

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM (SI) OF METRIC UNITS

Multiply inch-pound units	<u>By</u>	To obtain metric units
foot (ft)	0.3048	meter (m)
foot per day (ft/d)	0.3048	meter per day (m/d)
foot per year (ft/yr)	0.3048	meter per year (m/year)
foot squared per day (ft ² /d)	0.09290	meter squared per day (m ² /d)
gallon (gal)	3.785	liter (L)
gallon per minute (gal/min)	6.309x10 ⁻⁵	cubic meter per second (m ³ /s)
	0.06309	liter per second (L/s)
<pre>gallon per minute per foot [(gal/min)/ft]</pre>	2.070x10 ⁻⁴	cubic meter per second per meter [(m3/s)/m]
	0.2070	<pre>liter per second per meter [(L/s)/m]</pre>
gallon per minute per square mile [(gal/min)/mi ²]	2.436x10 ⁻⁵	cubic meter per second per square kilometer [(m ³ /s)/km ²]
	0.02436	liter per second per square kilometer [(L/s)/km ²]
inch (in.)	2.540	centimeter (cm)
	25.40	millimeter (mm)
mile (mi)	1.609	kilometer (km)
million gallons per day (Mgal/d)	3.785x10 ³	cubic meter per day (M ³ /d)
	3.785x106	liter per day (L/d)
square mile (mi ²)	2.590	square kilometer (km²)

To convert temperature in degree Celsius (°C) to degree Fahrenheit (°F), multiply by 9/5 and add 32.

GROUND-WATER RESOURCES OF THE ARCADIA-MINDEN AREA, LOUISIANA

By G. N. Ryals

ABSTRACT

The Sparta Sand of Eocene age comprises the Sparta aquifer, which yields 97 percent of the water used in the Arcadia-Minden area of north-central Louisiana along Interstate Highway 20 and U.S. Highway 80. The Sparta aquifer underlies all of the area except the extreme southwest corner. Pumpage from the Sparta aquifer in 1980 was 6.2 million gallons per day. Wells with specific capacities of 5 to 10 gallons per minute per foot of drawdown can be developed in this aquifer at most places. The potentiometric surface, which is 220 feet above to 180 feet below the National Geodetic Vertical Datum of 1929, is about 150 to 400 feet above the top of basal sand units of the aquifer; locally it is below the top of the aquifer. The potentiometric surface is declining at the rate of 1/2 to 4 feet per year; however, the rate of decline will decrease with time as hydraulic conditions change from artesian to water table.

Water from the Sparta aquifer may require treatment for iron for public-supply use at or near the outcrop of the Sparta Sand. Northeast and downdip from the outcrop, the water has low iron and higher dissolved-solids concentrations. Generally, the water downdip from the outcrop meets the current standards recommended by the U.S. Environmental Protection Agency for drinking-water.

The Wilcox-Carrizo aquifer is comprised of the Wilcox Group and Carrizo Sand of Paleocene and Eocene age. The aquifer underlies all of the Arcadia-Minden area but contains freshwater only in the south-western part. This part of the area is relatively undeveloped and pumpage is only 0.2 million gallons per day. Some sand beds can yield 50 gallons per minute or more of water to wells. However, the occurrence of such beds is variable; at some sites, yields of only a few gallons per minute are possible. Freshwater in the aquifer meets the U.S. Environmental Protection Agency drinking-water standards (1976) without treatment except at some sites where iron concentrations are excessive.

The terrace aquifer, which occurs in the western part of the study area, is not utilized for public supply but may be used for stock watering. Water from the terrace aquifer generally is soft and low in iron; however, locally, the water may be hard, corrosive, and high in iron. Yields of wells screened in the terrace aquifer west of the study area range from 10 to 60 gallons per minute. The terrace aquifer may be used to supplement supplies from the Sparta and Wilcox-Carrizo aquifers and for domestic wells.

The Arcadia, Bistineau, Gibsland, Minden, and Vacherie salt domes are disturbances caused by the local intrusion of salt. The vertical salt movements have disrupted the base of freshwater in the Sparta and Wilcox-Carrizo aquifers in the vicinity of the domes; however, the area affected is only about 4 square miles at each dome. Freshwater sands may be absent over a dome, and freshwater may occur to greater depths on the flanks of a dome than in the surrounding area. Test drilling near salt domes is necessary to find sand beds that will yield an adequate water supply.

INTRODUCTION

Along U.S. Highway 80 in northern Louisiana, population density is increasing. The area from Arcadia to Minden located adjacent to Interstate Highway 20 and U.S. Highway 80 (pl. 1) has the potential for further increases in population and in industry. In 1975 the Arcadia-Minden area had a population of about 35,000, an increase of about 3,000 since 1960. Ground water is the principal source of freshwater for this area. Development will require more water; therefore, existing ground-water supplies will need to be expanded, or new ground-water sources developed.

The Arcadia-Minden area comprises approximately 700 mi² and includes the northern part of Bienville Parish, the southern part of Claiborne Parish, the western part of Lincoln Parish, and the southeastern part of Webster Parish (pl. 1). The area is mostly rural; is characterized by steep-sided valleys, flat valley floors, and rolling timbered hills; is well drained; and has a humid, subtropical climate.

During the past 25 years, total ground-water pumpage has steadily increased in the study area. The average daily pumpage for the area (table 1) was 6.4 Mgal/d in 1980, which is an 88 percent increase from 3.4 Mgal/d in 1960. The large increase is mostly attributable to increased public-supply pumping. Ground-water pumpage for public supply responds to changes in population and per capita consumption. Industrial pumpage for older installations decreased as a result of improved water-use methods, including water recycling, and as a result of some industrial plants closing. However, total industrial pumpage doubled because of water demands by new industries.

Table 1.--Ground-water pumpage in the Arcadia-Minden area [In million gallons per day]

Total	al	Rur			
iocai	Livestock	Domestic	Industrial	Public supplies	Year
3.4	0.1	0.4	1.1	1.8	1960
3.9	.1	. 4	1.5	1.9	1965
3.5	.1	.3	.9	2.2	1970
6.0	.1	.2	2.3	3.4	1975
6.4	.1	.1	2.4	3.8	1980

The trend for the past 25 years has been for rural communities to develop public water-supply systems. The number of public-supply systems has more than doubled in the Arcadia-Minden area during this time. More systems probably will be developed; thus, more production wells capable of producing 50 gal/min or more will be needed. As public water-supply pumpage increases, rural-domestic pumpage will decrease because many home wells are abandoned when public-supply systems are available.

The purpose of this study is to describe and evaluate the ground-water resources as an aid in the development of ground-water supplies for the Arcadia-Minden area. By mapping the aquifers and determining their hydrologic characteristics and current water use, the available ground-water supply was evaluated, including the effects of salt structures on the ground-water supply. The hydrologic-data-collection program of the U.S. Geological Survey, conducted in cooperation with the Louisiana Department of Transportation and Development, Office of Public Works, provided much of the ground-water data for the Arcadia-Minden area. The Louisiana Department of Natural Resources, Office of Conservation, provided electrical logs used in mapping the aquifers. City and public water-supply system officials cooperated generously by providing records of wells and records of water use. Several officials allowed wells to be used for observation and tests.

HYDROGEOLOGIC SETTING

Regional hydrologic studies include information on the Arcadia-Minden area, and detailed studies have been made east and west of the area. Regional studies by Cushing, Boswell, and Hosman (1964) describe the Tertiary aquifers in the Mississippi embayment. Reports by Payne (1968, 1970, and 1972) describe the hydrologic significance of the lithofacies of the Sparta Sand, the Cockfield Formation, and the Cane River Formation, respectively. A detailed study by Sanford (1973) evaluates the water resources of the Ruston area, which is east of and adjacent to this study area. Immediately to the west of the Arcadia-Minden area, a study by Snider (in press) evaluates the ground-water resources of the Fillmore-Haughton-Red Chute area.

Freshwater occurs in the Arcadia-Minden area in aquifers of Tertiary (Paleocene and Focene) and Quaternary (Pleistocene) age (table 2). Within the Arcadia-Minden area, Tertiary formations that contain sand beds capable of yielding 50 gal/min or more for public supply are (from oldest to youngest) the Wilcox Group, the Carrizo Sand, and the Sparta Sand. The Carrizo Sand was deposited over an eroded and irregular Wilcox surface. Because of nondeposition or erosion over some Wilcox highs, the Carrizo Sand is discontinuous. The Wilcox is hydraulically interconnected with the overlying Carrizo Sand; therefore, the Carrizo and the Wilcox are considered to be a single hydrologic unit, called the Wilcox-Carrizo aquifer, in the project area. Formations that consist chiefly of clay (the Midway Group, the Cane River Formation, and the Cook Mountain Formation) are confining beds and separate most of the water-bearing formations, retarding water movement between these formations. The Tertiary beds dip gently to the east because the area is on the west limb of the Mississippi structural trough.

In the western part of the area, nearly flat-lying Pleistocene terrace deposits were deposited on the eroded surface of the Sparta Sand, Carrizo Sand, and Wilcox Group. The sand and gravel in the terrace deposits form an aquifer, the terrace aquifer, that probably is capable of yielding 50 gal/min or more at some sites.

The Tertiary aquifers in the Arcadia-Minden area are recharged principally from rainfall on outcrop areas. Freshwater enters the Wilcox-Carrizo aquifer from outcrop areas to the west and southwest of the study area. The Sparta Sand crops out in a northwest-southeasttrending band in the south-central part of the area (pl. 1). Much of the Sparta Sand is covered by terrace deposits in the western part of the area. In addition to direct recharge by rainfall, the Sparta aquifer is recharged by leakage from the terrace deposits. The Cook Mountain Formation, which is mostly clay, contains a basal sand in some areas that also may contribute water to the Sparta. These clay deposits are the dominant outcrops in the eastern two-thirds of the area (pl. 1), and retard the infiltration of rainfall. Deposits of the Cockfield Formation cap many of the hills in the area. Recharge is by vertical infiltration of rainfall, and most discharge is by lateral movement of water to nearby streams. Recharge to the terrace aquifer is by vertical infiltration of rainfall through the soil zone.

In most of the area, the deepest occurrence of freshwater is either in the Wilcox-Carrizo aquifer or the Sparta aquifer (table 2). Although the Wilcox-Carrizo underlies all of the study area, freshwater occurs in the unit in only 25 percent of the area (pl. 2A). The interface between saltwater and freshwater is very irregular.

^{1/}In ground-water studies in Louisiana, the U.S. Geological Survey has generally defined saltwater as that containing more than 250 mg/L of chloride. Water containing 250 mg/L or less of chloride is considered fresh. Freshwater has also been defined as containing 1,000 mg/L or less of dissolved solids, which is essentially equivalent to water containing 250 mg/L of chloride.

Table 2.--Geohydrologic units in the Arcadia-Minden area, Louisiana

			Description and		in the second se
Series		Stratigraphic unit	typical thickness	Hydrologic unit	Hydrologic characteristics
Pleisto- cene		Terrace deposits (undifferentiated)	Sand, gravel, and some clay. Limited to western part of study area. Thickness probably about 50 ft.	Terrace aquifer	No wells known to screen the aquifer in study area. Average hydraulic conductity 120 ft/d west of area.
		Cockfield Formation	Fine sand and clay; lignitic. Thickness about 40-140 ft.	Cockfield aquifer	Used mostly for local domestic supplies.
		Cook Mountain Formation	Clay, partly sandy; glauconitic. Thickness about 100-200 ft.	Confining bed	Local sands yield small quantities of water for domestic supplies.
Eocene	laiborne Group	Sparta Sand	Interbedded, clay and fine to medium sand; lignitic. Thickness about 400-700 ft. Unit is 20-100 percent sand.	Sparta aquifer	Principal aquifer of north-central Louisiana. Hydraulic conductivity typically ranges from 50 -110 ft/d. Well yields of 300-800 gal/min are common.
	C.	Cane River Formation	Clay; glauconitic, lignitic. Thickness about 100-300 ft.	Confining bed	Does not yield water to wells.
		Carrizo Sand	Fine to coarse sand; discontinuous. Thickness 0-150 ft.	Wilcox-Carrizo	Contains freshwater in about 25 percent of area. Aver-
	ronb roox	Undifferentiated	Interbedded clay, sand, silt; lignitic. Thickness about 390-850 ft. Unit is 20-30	aquifer	about 17 ft/d. Well yields range from about 10-100 gal/min.
əue					
Paleoco	Midway Group	Undifferentiated	Dense clay. Thickness about 600 ft.	Confining bed	Does not yield water to wells.

Most of the freshwater in the Wilcox-Carrizo aquifer is in the south-western part of the area, but an isolated body of freshwater occurs in Claiborne Parish. This isolated body was mapped on the basis of electrical logs. Freshwater in the Wilcox-Carrizo aquifer ranges from 0 to 1,300 ft below land surface.

The Sparta aquifer contains freshwater throughout the area where the unit is present (pl. 2A). However, basal sands in the eastern part of the area may contain slightly saline water. Freshwater in the Sparta occurs to maximum depths of about 400 ft below NGVD of 1929 (National Geodetic Vertical Datum of 1929) or about 800 ft below land surface.

As shown on plate 2A, abrupt and large differences in the altitude of the base of freshwater occur because the base of freshwater changes from one unit to another. The Wilcox-Carrizo and Sparta are separated by about 200 ft of the Cane River Formation (mostly clay). Where the Wilcox-Carrizo contains no freshwater, the base of freshwater is in the Sparta and is at least 200 ft shallower than in the Wilcox-Carrizo.

The Arcadia, Bistineau, Gibsland, Minden, and Vacherie salt domes occur in the study area (pl. 1). Salt domes are local structural anomalies caused by the vertical intrusion of salt. The top of the salt body (stock) for an individual dome averages about 1 mi in diameter and ranges in depth from 700 to 1,400 ft below land surface. The intrusion of salt has caused faulting and uplift of overlying beds, which has disrupted geologic units from the top of the salt stock to land surface. Each dome affects about 4 mi² or a total of about 20 mi² in the study area. About 3 percent of the study area is disturbed by the salt intrusions.

The salt domes have a pronounced local effect on the base of freshwater. Generally, freshwater may be absent over the apex of a dome and may occur at greater depths on the flanks of a salt dome than in the surrounding area. As shown by the base of freshwater map (pl. 2A), the Wilcox-Carrizo contains freshwater on the flanks of the Arcadia, Gibsland, and Minden domes; however, in the general area of these domes the Wilcox-Carrizo contains saltwater. Over the apex of the Bistineau, Gibsland, and Vacherie domes, beds of the Midway Group are at or near the surface. Because the Midway contains no sand beds, freshwater probably does not occur over the domes. Locally, freshwater may be present in shallow terrace and alluvial deposits. Although most units of Tertiary age were eroded as uplift occurred at a dome, downfaulted blocks that contain sand beds of Tertiary age may contain freshwater. The hydrologic patterns around salt structures are complex, and a detailed study of each one would be needed to determine hydrogeological conditions. Generally, salt domes are not favorable sites for freshwater wells.

GEOHYDROLOGIC PROPERTIES OF THE PRINCIPAL AQUIFERS

Wilcox-Carrizo Aquifer

Description

The Wilcox-Carrizo aquifer is comprised of the Carrizo Sand and the Wilcox Group; the latter consists of nonmarine sand, silt, clay, and numerous thin lignite beds. The top of the aquifer ranges from about 100 ft above NGVD of 1929 in the southwestern part of the area to 700 ft below NGVD of 1929 in the northeastern part (pl. 2B). Sand beds make up approximately 20 to 30 percent of the Carrizo Sand and Wilcox Group interval. The largely interconnected sand beds range from a few feet to 115 ft in thickness. Lateral extent of sand beds is highly variable (pl. 3). For example, the log of Union Production Company's test well in T. 18 N., R. 8 W. (Walker Unit No. 1, pl. 3, no. 61) shows one massive sand 125 ft in thickness at the top of the unit. By contrast, less than 2 1/2 mi away at the Carter Oil Company test well in T. 18 N., R. 8 W. (R. M. Davis No. 2, pl. 3, no. 59), the Carrizo Sand is absent; and the upper part of the log shows numerous Sand-grain size is also variable. In the Wilcox thin sand beds. Group interval, sand ranges in size from very fine to medium and is silty in many places. Where present, the Carrizo Sand consists of medium to coarse sand.

Hydraulics, Yield, and Water Levels

The hydrologic characteristics of the Wilcox-Carrizo aquifer were determined from pumping tests of five wells in the study area in Webster Parish. Values for hydraulic conductivity from these tests range from 1 to 19 ft/d and, based on the higher three values, averaged 17 ft/d (table 3). The variability is due to differences in the grain size and sorting of the sand. A sand that is 40 ft thick and has a hydraulic conductivity of 17 ft/d would have a transmissivity of $680 \text{ ft}^2/\text{d}$.

Water in the aquifer is confined under artesian pressure; therefore, the storage coefficient is estimated to be about 0.0001. Locally, the water in the aquifer may be under water-table conditions where sands are near the surface near salt structures; however, such sands are not extensive and, thus, are not important in the development of water supplies.

Yields of wells greater than 4 in. in diameter range from about 10 to 100 gal/min and average 50 gal/min (table 7). Most public-supply and industrial wells yield more than 50 gal/min. The average specific capacity for the Wilcox-Carrizo in the area is 1.3 (gal/min)/ft of drawdown. Specific capacity is a function of the ability of the aquifer to yield water over a given period of time and is also a function of well construction (including relative amount of

Table 3.--Hydraulic conductivity determined from tests of wells screened in the Wilcox-Carrizo aquifer

Well No.	Sand thickness (ft)	Hydraulic conductivity (ft/d)	Yield (gal/min)	Drawdown (ft)
₩b-265	42	19	25	25.9
Wb-270	36	17	40	35.9
Wb-306A	13	2	25	98.6
Wb-306B	15	1	22	150.5
Wb-329B	29	16	50	17.3

screen compared to aquifer thickness) and the degree of well development. For example, a properly developed 6-in. well with a specific capacity of 1.3 (gal/min)/ft of drawdown would have a drawdown of 38 ft in 24 hours at a pumping rate of 50 gal/min. However, if the well were not properly developed or only partially screened, resulting in a specific capacity of 0.8 (gal/min)/ft of drawdown, the drawdown would be 62 ft after pumping 24 hours at a rate of 50 gal/min.

Water levels in the Wilcox-Carrizo where sands contain freshwater generally range from 10 to 60 ft below land surface or from 135 to 223 ft above NGVD of 1929 (fig. 1). Large pumping centers have not been developed in the Wilcox-Carrizo aquifer, thus water-level fluctuations are small.

Quality of Water

In the study area, water from wells screened in the Wilcox-Carrizo aquifer is generally suitable for public supplies. However, the concentration of iron may exceed the limit (table 4) recommended by the U.S. Environmental Protection Agency (1976), and in some areas the water may have a hydrogen sulfide (H2S) odor and require treatment for removal of hydrogen sulfide. Freshwater from the Wilcox-Carrizo is soft to moderately hard. About half of the chemical analyses (table 8) of water from the aquifer show iron concentrations that exceed 0.3 mg/L (milligrams per liter). Locally, different sands may contain water with different concentrations of iron. screened in well Wb-306A (pl. 1 and table 8) is separated from that screened in well Wb-306B by 38 ft of clay. Water was collected from each well for chemical analysis. The iron concentration in water from well Wb-306A is 0.12 mg/L; whereas, the concentration for well Wb-306B is 1.3 mg/L. The concentrations of other chemical constituents also can vary from one sand to another. Where two or more sands occur at a site, it may be necessary to complete several test wells to determine the best source for a production well.

EXPLANATION

Water well Used as control point. Number is altitude of water level (measurements, 1960-80) Area where the Wilcox-Carrizo aquifer contains freshwater

POTENTIOMETRIC CONTOUR- Shows altitude of potentiometric surface. Dashed where approximately located. Contour interval 25 feet. National Geodetic Vertical Datum of 1929

Figure 1.--Potentiometric surface of the Wilcox-Carrizo aquifer.

Table 4.--Summary of chemical and physical properties of water from the Wilcox-Carrizo aquifer

Constituent or physical property	Range	Recommended limits (U.S. Environmental Protection Agency, 1976)
Bicarbonate (HCO ₃) Chloride (Cl) Color (platinum-cobalt	86 - 540 mg/L 4.7 - 360 mg/L	250 mg/L
units) Dissolved solids Fluoride (F) Hardness (as CaCO ₃) Iron (Fe) pH (units) Specific conductance (micromhos/cm at	0 - 40 130 - 975 mg/L .1 - 1.4 mg/L 2 - 65 mg/L .01- 4.5 mg/L 7.3 - 8.8	15 500 mg/L .8-1.0 mg/L .3 mg/L 6.5-8.5
25°C)	164 -1,790 16 - 370 mg/L 19 - 25.5°C (66-78°E	20

Samples from two wells, Wb-28l and Wb-306A, show fluoride concentrations greater than the recommended limits (tables 4 and 8). Beneficial health effects reportedly occur in areas where water contains natural fluorides; however, excessive amounts of fluoride can cause mottling of teeth.

Present and Potential Development

In the Arcadia-Minden area, the only wells presently completed in sands of the Wilcox-Carrizo aquifer are located in Webster Parish. The wells in Webster Parish yield approximately 0.2 Mgal/d or about 3 percent of the total ground-water pumpage in the area. The village of Heflin, McIntyre Water Works District, the Central Water System, Jenkins Water System, and the Horseshoe Road Water System pump water from the Wilcox-Carrizo (fig. 2). These five public water-supply systems pumped about 0.16 Mgal/d and served about 2,200 people in 1980 (table 9). The rest of the water pumped from the aquifer is for domestic or industrial use.

A major problem concerning development of the Wilcox-Carrizo is the possible increase in chloride concentration in water from wells tapping the aquifer near the downdip limit of freshwater (pl. 2A). Pumpage from wells located near the interface could eventually cause salty water to move into areas containing freshwater. A test well (Wb-265) was drilled to a depth of 200 ft for the Jenkins community at the freshwater-saltwater interface. Water from this well had a chloride concentration of 361 mg/L, which is above the concentration of 250 mg/L recommended by the U.S. Environmental Protection Agency

Figure 2.--Location of public water-supply systems and estimated pumpage, 1980.

for public supply. Two public-supply wells (Wb-316 and Wb-317), both drilled to a depth of 225 ft for the Jenkins community 1 mi northwest from the test well, yield freshwater. The maximum estimated rate of ground-water movement in the Wilcox-Carrizo in the vicinity of the Jenkins community is about 25 ft/yr. Thus, if the freshwater-saltwater interface were only one-half mile from the production wells, more than 100 years would be required for saltwater to reach the production wells at a rate of 25 ft/yr. However, the precise location of the freshwater-saltwater interface is not known. In addition, because of the discontinuity of the sand beds, the actual rate of movement is probably much lower.

Large well fields capable of producing 2 Mgal/d or more will be difficult to develop because Wilcox-Carrizo wells are usually low yielding and many wells would be needed. Approximately 28 wells, each well pumping 50 gal/min continuously, would be needed to produce 2 Mgal/d. Such a well field would probably cover many square miles. Because of the variability in thickness and extent of sands beds, a large-scale test-drilling program would also be necessary.

Pumpage from the Wilcox-Carrizo has increased only slightly because population growth in the area where the aquifer is utilized has been small. Projected growth there also is small; therefore, the Wilcox-Carrizo should have the capability to furnish sufficient quantities of water to meet projected needs. Some increase in production can be met by expanding existing systems.

Sparta Aquifer

Description

The Sparta Sand consists of nonmarine massive sand, silty sand, shale, lignitic shale, and some lignite beds. Interconnection of the sand beds causes the Sparta Sand to respond as a single aquifer, the Sparta aquifer. The Sparta Sand ranges from 400 to 700 ft in thickness, and the base of the unit ranges from 300 ft above to 400 ft below NGVD of 1929 within the area (pl. 2C). Sands 100 ft thick are common and may occur at any depth in the formation but generally occur in the middle or basal part. Sand makes up from 20 to 100 percent of the formation; at most places the unit averages between 50- and 75-percent sand.

In Webster Parish the aquifer consists of a massive sand in the lower part and thinly bedded, sandy clay and sand with some lignite in the upper part. Geologic section B-B' on plate 3 shows the vertical distribution of the Sparta Sand in Webster Parish. Sand beds are exceptionally thick at wells Wb-277 and Wb-260 (T. 19 N., R. 9 W., pl. 1). In the eastern part of the study area, individual sand beds range from a few feet to 250 ft in thickness. Sand intervals shown on sections A-A' and B-B' (pl. 3) are typical for the area.

Hydraulics and Yield

The hydrologic properties of the Sparta aquifer were determined from 21 pumping tests in Webster, Lincoln, and Bienville Parishes. Variations in transmissivity and hydraulic conductivity as related to sand thicknesses are given in table 5. The variations given in table 5 agree with the conclusion of Payne (1968) that the hydraulic conductivity of the Sparta generally increases with increased sand thickness. The average hydraulic conductivity for the area is 60 ft/d.

Sands in the Sparta aquifer generally are confined. A storage coefficient of 0.0004, which is typical of artesian aquifers, was determined from a pumping test of well Bi-157 (T. 18 N., R. 7 W.). This value for the coefficient of storage is in agreement with another determined for the Sparta aquifer in Union Parish (Snider and others, 1972, p. 15). Unconfined conditions would be expected in or near the outcrop, although deeper sands might be confined. In the study area, the storage coefficient probably ranges between 0.0001 (artesian conditions) and 0.1 (water-table conditions).

Table 5.--Hydraulic characteristics of the Sparta aquifer as a function of sand thickness

Sand thickness	Transmissivity	Hydraulic co	nductivity
(ft)	range (ft ² /d)	Range (ft/d)	Average (ft/d)
10-36	390-2,000	17-170 <u>1</u> /	50
37-70	1,500-4,000	33-120	60
70	3,700-9,600	90-130 <u>2</u> /	110

^{1/}Hydraulic conductivity of 170 ft/d determined in test of well Wb-322, near Minden.

Many industrial and public-supply wells screened in the Sparta aquifer that are greater than 6 in. in diameter yield as much as 300 to 500 gal/min from sands less than 50 ft in thickness; wells yield as much as 800 gal/min from sands greater than 50 ft in thickness. The average yield for production wells screened in the Sparta aquifer in the study area is 500 gal/min.

^{2/}Hydraulic conductivity of 130 ft/d determined in test of well Bi-149A, near Bryceland.

The efficiency of a well can be determined by comparing the actual specific capacity to the theoretical specific capacity. For example, in the Sparta, a sand that has a thickness of 50 ft and a hydraulic conductivity of 62 ft/d has a transmissivity of 3,100 ft 2 /d. theoretical specific capacity (Meyer, 1963) of a completely developed 6-in. diameter well screened in the total thickness of a sand with a transmissivity of $3,100 \text{ ft}^2/d$ and a storage coefficient of 0.0001 is10 (gal/min)/ft of drawdown. With a pumping rate of 500 gal/min the well would have a theoretical drawdown of 50 ft after pumping 24 hours. If the well had a measured specific capacity of 4 (gal/min)/ft of drawdown due to poor development, the well would have a drawdown of 125 ft after pumping 24 hours and would be 40 percent efficient. Regional water-level declines coupled with the additional drawdown of a poorly developed well may cause pumps to be lowered, the well redrilled, or yields to be reduced. Values for specific capacity of 5 to 10 (gal/min)/ft of drawdown probably can be expected where sands are at least 50 ft thick and the wells are properly constructed and developed.

Water Levels

In 1980 in the Arcadia-Minden area, the altitude of the potentiometric surface of the Sparta aquifer ranged from 220 ft above to 180 below NGVD of 1929 (fig. 3). In most of the area, differences between water levels in wells in sands at different depths at a specific site are just a few feet because the Sparta sands are connected. However, in local areas where the interconnection is poor, larger differences in water levels exist. Pumpage at Minden has lowered water levels near the well field and created a cone of depression as shown by the closed contours on the potentiometric map (fig. 3).

The potentiometric surface in 1980 (fig. 3) was about 150 to 400 ft above the top of basal sands in the Sparta aquifer. The potentiometric surface has been declining at the rate of 1/2 to 4 ft/yr in the Sparta in northern Louisiana. This decline is the result of large amounts of pumpage from the Sparta, especially in the major pumping centers at Bastrop, Hodge, Monroe, Ruston, and Springhill in Louisiana and at El Dorado and Magnolia in Arkansas. Although Ruston is the nearest major pumping center to the Arcadia-Minden area, pumpage at the larger Hodge and El Dorado pumping centers probably have the greatest influence on the study area. Veatch (1906) reported water levels at Arcadia of 130 ft below land surface. Water levels measured at Arcadia in 1980 are about 230 ft below land surface, a decline of 100 ft in about 75 years. Water levels at Minden have not declined as much as in other areas because of local recharge from the overlying terrace aquifer. Currently, water levels at Minden range from about 50 to 100 ft below land surface compared to about 30 to 50 ft below land surface in 1906.

Figure 3.--Potentiometric surface of the Sparta aquifer, spring 1980.

Since the mid-1960's, water levels in wells in the middle and lower sands of the Sparta Sand have been below the clay unit of the Cook Mountain Formation throughout the area. Because sands of the Sparta are interconnected, the upper part of the Sparta is probably undergoing dewatering in the Arcadia-Minden area. Before the regional decline caused water levels to drop below the Cook Mountain Formation, only pumping levels at specific sites were below the Cook Mountain Formation. No air could reach the upper sands in the Sparta; however, when the water levels declined below the Cook Mountain Formation regionally, air entered the system and dewatering of the uppermost sand beds began. Even though water levels continue to decline at the rate of 1/2 to 4 ft/yr in wells in deeper sands, it would take over 100 years before dewatering of the lower producing sands begins. Well yields will decrease as water levels are lowered because of the increase in pumping head and less available drawdown. As pointed out by Sanford (1973), the most permeable sands are in the lower part of the Sparta. According to Sanford, as water levels are lowered below the clay unit of the Cook Mountain Formation and air enters the formation, water-table conditions will prevail. Therefore, the storage coefficient will approach water-table values. As this condition develops, the rate of water-level decline will be reduced. will occur from sands in the upper part of the Sparta Sand and lower part of the Cook Mountain Formation, which provide a water source having a high storage capacity. Drainage is now contributing to the yield of the lower sands; however, according to Sanford it has not been evaluated quantitatively because of the uncertainity in estimating the actual specific yield of the deposits. Because the upper sands act as a recharge source, the rate of water-level decline in the lower sands will decrease.

Observation wells Cl-136 (T. 19 N., R. 6 W.) and L-113 (T. 18 N., R. 4 W., pl. 1) screened in basal sands have water levels 5 and 60 ft, respectively, below the top of the Sparta aquifer. Hydrographs of these wells (fig. 4) show water-level declines of 3 ft/yr for well L-113 and 2 ft/yr for well Cl-136. The decline at well L-113 reflects pumpage at Simmsboro, and well Cl-136 reflects pumpage at the South Claiborne Water System. Observation well Bi-144 (T. 18 N., R. 5 W., pl. 1), located between wells Cl-136 and L-113, has a water level that is at or slightly above the top of the Sparta. As indicated by the hydrograph of well Bi-144 (fig. 4), between 1970 and 1973 the water-level decline was very great compared to the decline since 1973. The hydrograph of well Bi-144 is similar to that for well L-113. The general trend for all wells in figure 4 reflects the regional water-level trend in the Sparta aquifer.

Water levels in shallow wells in the outcrop area of the Sparta Sand fluctuate seasonally. This is caused by changes in the amount of water in storage as a result of cyclic recharge by precipitation that occurs mainly in winter and spring.

Figure 4.--Water-level trends in wells in the Sparta aquifer.

Quality of Water

Water from the Sparta aquifer is a soft, sodium bicarbonate type. Chemical analyses of water samples from selected wells screened in the Sparta and other aquifers are given in table 8. Downdip from the outcrop of the Sparta the water generally is suitable for public-supply use without treatment. Water in or near the outcrop area may require treatment to remove iron and raise the pH.

Changes in iron concentration, pH, and dissolved solids occur as water in the Sparta aquifer moves downdip. In and immediately downdip from the outcrop area, the water may be corrosive (pH less than 7 units), have iron concentrations greater than 0.3 mg/L, and have a low concentration of dissolved solids. The area where the probability is high that wells will yield water with relatively high iron concentrations and low pH is shown on plate 2C. The iron concentration generally decreases, the pH increases, and the dissolved solids increase (table 6) downdip from this area.

The temperature of water in the Sparta aquifer ranges from 18 to 25°C (64 to 77°F).

Table 6.--Updip and downdip ranges in pH, iron, and dissolved solids in water from the Sparta aquifer

General location	pH units	Iron (mg/L)	Dissolved solids (mg/L
At or near the outcrop	5.1-7.0	0.3-6.0	30-150
After movement downdip			
from outcrop	7.0-8.5	<.3	150-350

Present and Potential Development

In 1980, 97 percent of the water used in the area was obtained from the Sparta aquifer. Twenty public-supply systems in the Arcadia-Minden area have wells screened in the Sparta aquifer (fig. 2). The city of Minden, which has the largest public supply, pumps an average of 2.58 Mgal/d. Pumpage for the towns of Arcadia and Gibsland, the village of Sibley, and the South Claiborne Water System ranges from 0.06 to 0.2 Mgal/d (table 9).

Well fields capable of producing 1 Mgal/d or more can be developed at most places in the area; however, development of a large well field would affect water levels. Increasing the pumpage by several million gallons per day would accelerate the rate of water-level decline.

Pumpage in 1980 in the area was 6.2 Mgal/d. Should current trends in ground-water pumpage continue, by the year 2000, approximately 8 Mgal/d will be needed from the Sparta aquifer to meet demand. At the current rate of development, future demands can be met by the Sparta aquifer. Large increases in usage can be met by expanding existing water-supply systems by installing additional wells.

Terrace Deposits

Terrace deposits form the terrace aquifer and occur in the western part of the study area (pl. l). The deposits consist of sand and gravel at the base grading upward to silt and clay. Thickness of the unit is typically 50 ft but may be as much as 100 to 150 ft in places. Although no wells are known to be screened in the terrace aquifer in this area, it is an important source of water in the Fillmore-Haughton-Red Chute area to the west. The terrace aquifer is capable of yielding an adequate supply of water for some domestic and public-supply uses.

The data from development in the Fillmore-Haughton-Red Chute area may be indicative of the potential for development of the terrace aquifer in Webster Parish. The average hydraulic conductivity in that area is 120 ft/d. Thus, a saturated sand 40 ft thick would have a transmissivity of about 5,000 ft 2 /d. Most wells screened in the aquifer west of the study area yield between 10 and 60 gal/min. The aquifer is probably under water-table conditions in the Webster Parish part of the area. According to Snider (in press), if the annual rate of rainfall infiltration is 3 in., a continuous yield of about 100 (gal/min)/mi 2 is possible in the Fillmore-Haughton-Red Chute area. A sustained yield of 200 to 300 gal/min could be possible if the pumpage cone covered several square miles and the available drawdown was sufficient. Similar yields probably can be obtained at some sites in the Webster Parish part of the study area.

Water from the terrace aquifer may be similar to that from wells west of the area. The water generally requires little treatment; however, water from the aquifer may be corrosive, high in iron, and moderately hard to very hard. Chemical analyses of water from the terrace aquifer in the Fillmore-Haughton-Red Chute area show iron concentrations ranging from 0.05 to 4.4 mg/L, hardness from 49 to 380 mg/L, and pH from 5.4 to 8.2 units.

The terrace is an alternate source of water for some parts of Webster Parish in the study area. It can be used to supplement existing supplies of water from the Wilcox-Carrizo and Sparta aquifers. Near the Bistineau salt dome in an area less than 4 mi², the terrace is the only aquifer that contains freshwater. (See pl. 2.)

SUMMARY AND CONCLUSIONS

The Sparta Sand, Carrizo Sand, and sands of the Wilcox Group are the principal sources of ground water for the Arcadia-Minden area. Pumpage from the Sparta and Wilcox-Carrizo aquifers in the study area amounted to 6.4 Mgal/d in 1980. Projected ground-water demands can be met from the two aquifers in the area. The terrace aquifer can be used in the western part of the area to supplement existing supplies.

The Wilcox-Carrizo aquifer contains freshwater in 25 percent of the area and ranges from a few feet to 1,300 ft below land surface. The interface between saltwater and freshwater is irregular, and care should be taken not to locate wells near the interface. Water from the aquifer contains iron and hydrogen sulfide at most places, and treatment may be required for public-supply use. Yields of wells usually are low; however, yields of 50 gal/min are possible in places. Because of the variability in extent and thickness of sand beds, test drilling and aquifer testing would be desirable before developing a production well or well field.

The Sparta is the most extensive aquifer in the area and supplies 97 percent of all water now used. Freshwater in the Sparta extends to depths of 800 ft below land surface and is a soft, sodium bicarbonate type. At or near the outcrop, water from the Sparta may require treatment for iron removal. Wells with yields of 500 gal/min can be developed at most places. Continuing water-level declines of 1/2 to 4 ft/yr is the major problem in the area. As the water-level decline continues with time and water-table conditions are approached, the rate of water-level decline will decrease as the storage coefficient converts from artesian to water-table conditions.

The terrace aquifer is limited to the western part of the area and is not being used as a source of water for public-supply systems. The quality of water and potential yields of wells probably varies from site to site, but the quality and yields may be good locally. The terrace aquifer could be used as an alternate source of water or to supplement existing supplies from the Wilcox-Carrizo and Sparta aquifers.

Salt-dome structures have caused local disruptions in the base of freshwater. The disruptions interfere with the development of groundwater supplies only locally-generally in areas immediately around the domes.

SELECTED REFERENCES

- Cardwell, G. T., and Walter, W. H., 1979, Pumpage of water in Louisiana, 1975: Louisiana Department of Transportation and Development, Office of Public Works Water Resources Special Report 2, 15 p.
- Cushing, E. M., Boswell, E. H., and Hosman, R. L., 1964, General geology of the Mississippi embayment: U.S. Geological Survey Professional Paper 448-B, 28 p.
- Martin, J. L., Hough, L. W., Raggio, D. L., and Sandberg, A. E., 1954, Geology of Webster Parish: Louisiana Department of Conservation Geological Bulletin 29, 252 p.
- Meyer, R. R., 1963, A chart relating well diameter, specific capacity, and the coefficients of transmissibility, and storage, in Bentall, Ray, compiler, Methods of determining permeability, transmissibility, and drawdown: U.S. Geological Survey Water-Supply Paper 1536-I, p. 338-340, fig. 100.
- Payne, J. N., 1968, Hydrologic significance of the lithofacies of the Sparta Sand in Arkansas, Louisiana, Mississippi, and Texas: U.S. Geological Survey Professional Paper 569-A, 17 p.
- 1970, Geohydrologic significance of lithofacies of the Cockfield Formation of Louisiana and Mississippi and of the Yequa Formation of Texas: U.S. Geological Survey Professional Paper 569-B, 14 p.
- Payne, J. N., 1972, Hydrologic significance of lithofacies of the Cane River Formation or equivalents of Arkansas, Louisiana, Mississippi, and Texas: U.S. Geological Survey Professional Paper 569-C, 17 p.
- Ryals, G. N., 1980a, Potentiometric surface of the Wilcox-Carrizo aquifer; Bienville, Red River, northern Natchitoches, and southern Webster Parishes, Louisiana: U.S. Geological Survey Open-File Report 80-1179 (map).
- 1980b, Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980: U.S. Geological Survey Open-File Report 80-1180 (4 maps).
- U.S. Geological Survey Open-File Report 80-2038, 5 p.
- Ryals, G. N., and Hosman, R. L., 1980, Selected hydrologic data from the vicinity of Rayburns and Vacherie salt domes, northern Louisiana salt-dome basin: U.S. Geological Survey Open-File Report 80-217, 17 p.
- Sanford, T. H., Jr., 1973, Water resources of the Ruston area, Louisiana: Louisiana Department of Public Works Water Resources Technical Report 8, 32 p.

- Snider, J. L., 1982, Ground-water resources of the Fillmore-Haughton-Red Chute area, Bossier and Webster Parishes, Louisiana: Louisiana Department of Transportation and Development, Office of Public Works Technical Report [in press].
- Snider, J. L., Calandro, A. J., and Shampine, W. J., 1972, Water resources of Union Parish, Louisiana: Louisiana Department of Conservation and Louisiana Department of Public Works Water Resources Bulletin 17, p. 15.
- U.S. Environmental Protection Agency, 1976, Quality criteria for water: U.S. Environmental Protection Agency report EPA--440/9-76-023, 501 p.
- Veatch, A. C., 1906, Geology and underground water resources of northern Louisiana with notes on adjoining districts, in Geological Survey of Louisiana, report of 1905: Louisiana State Experiment Station, Louisiana Geological Survey Bulletin 4, p. 261-457.
- Wallace, W. E., Jr., 1946, Geologic map of the State of Louisiana: Shreveport, La., Shreveport Geological Society.
- Walter, W. H., 1982, Pumpage of water in Louisiana, 1980: Louisiana Department of Transportation and Development, Office of Public Works Technical Report [in press].

HYDROLOGIC DATA

Tables 7-10

Table 7.--Description of selected wells in the Arcadia-Minden area

Abbreviations used in the table are as follows:

Aquifer: S, Sparta Sand

W, Wilcox-Carrizo

Data Available: C, chemical analysis

D, driller's log E, electrical log

MA, mechanical analysis of sand samples

PT, pumping test

Owner: (m), municipality

WS, water system

Status of Well: D, well destroyed

O, observation well

P, production well

Table 7.--Description of selected wells in the Arcadia-Minden area

1	ţεκ	iupA		တ	ß	ß	W	ഗ	S	W	ß	W	S	Ŋ	S	ഗ	X	Ŋ	ß	ഗ	W	ധ	Ŋ	Ŋ	W	Ø	S	ഗ	ഗ	Ω	W
677	w io su	Stat		0	0	ρι	ρι	P4	Д	ρι	д	ቢ	Д	Д	գ	Ω	Ω	Д	Ω	Ω	Ω	Ω	ρι	Д	Д	ρι	0	Д	\subseteq	O,	Д
		뒲		ŧ	ı	1	1	ı	ı	ŧ	×	ı	1	1	i	×	×	1	×	×	×	×	1	×	×	1	×	×	×	į	1
	Data available	₩.		ŧ	ı	ŧ	1	1	i	ı	ł	1	1	ŧ	1	×	×	ı	×	×	×	×	1	×	×	ŧ	×	×	×	1	ŧ
	Data aila	m		ŧ	i	i	ı	×	ı	×	i	×	×	i	ţ	×	×	i	×	×	×	×	ŧ	×	×	ŧ	×	×	×	×	i
	aV			1	×	×	×	×	×	×	×	×	×	i	×	×	×	ì	×	×	×	×	1	×	×	ŧ	×	×	×	×	1
		lυ		. 1	ı	×	ı	×	×	×	Į	ŧ	ı	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	!	×
(urm	g (dat/r	Yiel		9		300	120	200	80	139	296	190	310	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	150	30	20	1	9	46	20	32	1	13	24	75	99	20	38	116	1
-	(°u buţ	nəq0 it)		1	1	.012	1	.032	.020	! !	.032	1	1	1	.014	.016	.016	1	.012	.012	.012	.010	! !	.010	.010		.010	.012	.012	.020	1
Screen	rerval	Depti ni i)	AL JULY IN THE STATE OF THE STA	 	428-489	522-585	518-585	556-602	303-363	426-466	544-594	398-418	(600–620) (630–645)	359-365	260-300	260-280	530-540	320-340	304-316	418-430	500-512	400-410	251-263	496-506	643-653	554-594	620-630	264-274	400-410	- 1	367-375
	ј°) ∋£6⊾	ansiO ii)	Ħ	ł	9	4	9	ω	9	4	∞	9	9	~	9	ო	m	വ	m	ĸ	ώ	7	2	4	m	4	7	7	7	な	7
ерек	ng diamer. 1°)		PARISH	9	∞	12	છ	12	10	9	12	10	10	4	10	4	4	9	4	4	4	7	7	4	4	9	7	4	4	ω	7
(13	t) uoțae	EŢĠΛṢ	1 1	270	260	340	350	350	270	260	340	380	380	320	245	280	230	240	330	330	330	270	290	360	350	350	320	250	250	380	380
рəq	combye	Д с як	BIENVILLE	1923	1927	1940	1932	1950	1946	1954	1954	1959	1959	1957	1965	1968	1968	1968	1969	1969	1969	1969	1963	1969	1970	1946	1970	1970	1970	1971	1967
	_	ಭ		M	×	<u>2</u> M	5W	SW	×	M	SW.	<u>₩</u>	6W	<u>/</u> M/	₩8	7	ř	Ž	×	×	ΜŽ	Mo	<u>₩</u>	SW.	5W	5W	K	Ϋ́	×	M	×
:	[Ocat1on	Ę-i		18N	18N	18N	18N	18N	18N	18N	18N	18N	18N	18N	18N	18N	18N	18N	18N	18N	18N	17N	17N	18N	18N	18N	18N	18N	18N	18N	18N
\$	JI	Sec		14	14	38	38	18	14	74	18	12	12						36										14	Ŋ	Ŋ
1	Owner			Gibsland (m)	do	Arcadia (m)	O	OP	(m)	do	qo	CONAGRA	qoqo	L. O. Towns	Taylor Development Co	La Ofc of Public Works-	qo	La Office of Highways	La Ofc of Public Works-		do	do	Mr. Taylor	La Ofcof Public Works-		Girl Scouts of America-	U.S. Geological Survey-	La Ofc of Public Works-	qo	Alabama WS	E. E. Letlow
	Well No.			Bi- 1	ı	ì	ı	1	ı	ı	Bi- 36	Bi- 58	Bi- 59	Bi- 78	Bi- 90B-	Bi-103	Bi-104	Bi-133	Bi-136A-	Bi-136B-	Bi-136C-	Bi-137	Bi-138	Bi-139	Bi-140	Bi-142	Bi-144	Bi-145A-	Bi-145B-	Bi-147	Bi-148

Table 7.--Description of selected wells in the Arcadia-Minden area--Continued

]										
		\$	•		ted	(JJ	ере		Screen		(uţw						ejj
Well No.	Owner	9	Location	c	combre) noits	ng diam ng diam	u•) егек		(•u buţ	d (gal/i		E	Data available	ole		w io su
		Sec.	Ť	ĸ.	Хезг	EJGA		msia	∃q⊛I ni	nəqo i)	Yiel	U	Д	E	MA	E	Stat
Bi-149A- Bi-149R-	La Ofc of Public Works-		17N	M 6	1970			m	416-426	0.018	40	×	×	×	×	×	
Bi-157	Gibsland (m)		18K 18K	₹ ₹	1973	325 250		n w	491-501 347-399	018	125	×ı	×ı	× 1	×	×	O f
Bi-163 Bi-177	La Ofc of Public Works-	24	18N	×	1974		'বা'।	00	326-336	010	25	×	×	×	×	×	ч Д
//TTCT	file. Deballon (m)	g 7	i g	₹ {	1973			m	494-514		20	ı	×	×	ı	1	Д
DI-191	brycetand (m)	77	E	<u>M</u>	1972		7	Ą	(410-425)	.020	100	ŧ	i	1	1	ŧ	Д
B1-198	Mt. Calm WS	24	I.	<u>2</u>	1978	329	4,	7	456-476	1	35	ı	×	×	ŧ	×	ρι
Bi-217	Department of Energy	∞	17N	5W	1980	329	9	4	(477-549)	•016	70	×	×	×	×	×	0
Bi-240	Alabama WS	2	18N	5W	1979	365	∞	4	388-488	 - - - -	210	1	×	×	1	1	ρų
					CLAIE	CLAIBORNE	PARISH	H									
01-100-1	7+hong (m)	ı	1037	1	1 2 2		,										
CI-121	do	٠,	19N	<u></u>	1964	28 c 28 c 28 c	y Q	વ' <	260-610		85	×	×	×	1	ı	
Cl-130	H. M. Murphy	33.	19N	Ži iš	1967	320	0	۲ 🗸	323-329		777	× ×	× 1	×ι	1 1	1 1	
CI-136	U.S. Geological Survey-	7	19N	<u>M</u> 9	1974	405		7	825-835	.010	15	×	×	×	×	×	
CI-138	OD	Ξ:	No.	8	1975	380		7	651-662	.018	15	×		×	×	×	
CI-142A-	La Orc of Public Works-	14	19N	<u>M</u>	1976	408	4	7	441-461	.018	30	×		×	×	×	
C1-1428-		7	192 192	3	1976	408	4	m	573-593	.020	33	×	×	×	×	×	
CI-142C-		14	767 1	8	1976	408	4	m	692-702	.020	27	×		×	×	×	
CI-145	South Claiborne WS	<u>1</u> 4	787 287	<u>M</u>	1976	410	Q	m	580-610	.018	103	×		×	×	×	
C1-146		14	19N	<u>M</u>	1976	408	9	Μ	73-	.018	105	1			. 1	: ×	
Cl-147		25	20N	×	1978	420	9	m	552-567	1	83	ı	×	×	ı	; ;	S C
	TOTAL				LINC	LINCOLN PARISH	ARISE	Pres.									
L- 8	Lincoln Parish School																
L- 34	Simsboro (m)	77	18N 18N	4W 4W	1937	330	φα	"	485-525		9 [× :	· ×:	ı	ı	1	D4 F
		1	Š	ř	7	2	5	1,	004-044	! ! !	STT	×		ı	ı	i	ρų

ωωωωωωωωω	1	ល ល	ഗ	w i	ß	w c	Ω i	S	'≤	3	ω (S)	ഗ	ഗ	ល											3	
		ውዑ	ρų	Α.	μ	ρι	ן אם	Д	Ω	<u>ب</u>	<u>Д</u> , ;	Д	Ωį	ርፈ	Д	H	Ω	Д	\Box	Д	Ω	Д	PH	Ω	ы	μ	
		1 1	ı	1	I	1	1	1	×	ŧ	ı	ı	I	i	×	×	1	1	×	×	×	×	1	×	1	•	×
11111 × × 1 1 ×		i i	ı	ı	ı	ŧ	1	ŧ	×	1	ı	1	1	ì	×	i	×	1	×	×	×	×	ŧ	×	ŧ	ŧ	×
		1 1	i	ı	i	ŧ	×	ŧ	×	×	i	i	i	ŧ	×	×	i	ŧ	×	1	×	×	×	×	1	ŧ	×
×IXIIXXXIX		1 1	i	×	ŧ	1	1	1	×	×	1	ŧ	1	ı	×	×	×	1	×	×	×	×	×	×	×	1	×
*****		1 1	×	×	1	×	×	1	×	×	×	×	×	×	×	×	×	×	×	ı	×	×	ł	×	×	×	×
225 225 149 140 24 24 15		800	800	850	1		156	1 1 1	12	75	1 1	1	1		1	55	17		30	1,001	50	20	1,000	40	20	100	70
.010 .012 .012 .010 .010		6.030 .024	.030	# # # # #	-		1	-	.025	 		1	1		.004	.016	.020	1 1 1	.008	.030	,016	.016	.030	.016	.020	1	.010
330-360 532-550 562-622 480-520 696-742 487-499 740-750 654-674 497-537 525-535		279-309 241-305	260-291	259-291	60- 75	359-379	130-170	67-107	418-438	368-458		20- 90	? - 72	(328-338)	222-233	412-442	246-257	330-350	124-134	196-226	191-201	161-171	230-280	216-226	185-220	160-190	228-238
44 124 W 44 44		12	10	12	ŧ	4	ω	9	ო	m	9	i i	l ‡	4	7	4,	7	N	ო	16	m	m	16	m	m	4	4
4000044400	PARISH	82	18	18	4	4	19	12	4	7	9	マ	4	4,	Ą	9	4	び	4	24	4	4	24	4	٢	9	4
320 380 320 330 355 355 260 280	ER P?	185	200	200	165	240	205	205	285	285	260	260	300	250	275	262	262	230	185	200	180	205	200	185	278	210	200
1965 1964 1967 1969 1970 1968 1968 1972	WEBSTER	1950	1949	1953	1975	1962	1963	1963	1965	1965	1	1955	 	1961	1967	1966	1967	1967	1968	1966	1968	1968	1966	1968	1968	1968	1968
4W 4W 4W 4W 4W 4W 4W 4W 4W		M6	₹	8	Š	8	8	iχ	8	8	8	M8	88	₩8	8	8	Š	8	B	5	MOT	B	F	10W	8	low	Š
17N 18N 18N 18N 18N 18N 18N 19N 19N		19N	19N	19N	19N	19N	18N	18N	17N	17N	18N	18N	18N	N6T	T8N	19N	19N	19N	18N	19N	18N	18N	19N	18. N.	1 KB	19N	19N
34 34 32 32 32 32 32 32 32 32 32		28	8 8	78	31	24	21	21	14	14	24	19	20	∞	19	∞	∞	20	22	28	27	σ	28	26	5	35	7
W. P. Williams B. Gainttes Isurens Glass, Inc Simsboro (m) Fellowship WS Ia Ofc of Public Works- U.S. Geological Survey- W. P. Williams Mt. Zion WS U.S. Geological Survey-		Minden (m)			. Dixie Inn (m)	T. B. Norman	Sibley (m)	OP	- Ta Ofc of Public Works-	- Heflin (m)	- Dubberly (m)				. Ta Ofc of Public Works-				- Ta Ofc of Public Works-	Minden (m)	TEST OF OF Public Works-					. McIntore WS	•
L- 50 L- 53 L- 67 L- 90 L-113 L-1153 L-153		Wb-157	WD-109-1	WD-161	Wh-162A-	WD-204	WD-218-	WD-247	MD-249	WO-250	WD-252	WD-253	WD-254-	Wb-255	Tally m O F Q - m	WD-250	EB-263	10 10 1 10 10 10 10 10 10 10 10 10 10 10 10 10 1	WB-263-	WD 200	140-404 140-04	MD 400	Tab - 260a	WD-407	WO! 2 / 0 - 1	WB-276-	WD-277A-

Table 7.--Description of selected wells in the Arcadia-Minden area--Continued

1	ĘĠĸ	τυρ₩	(S	w (ນ ແ	n B	S CO	Ŋ	3	ω	လ	ß	ı	1	⋈	Z	ഗ	S	လ	ധ	ഗ	Ś	ಬ	3	Z	ß	တ	တ	ß
eTT.	w lo sr	Stati			Дί		ם כ	0	0	ሲ	ሷ	Д	D,		Ω	Ω	Ω	\Box	Ω	Ω	Ω	Ω	Д	Д	Д	μ	Ω	Ω	Ω	Ω
		Æ		×	×	×	××	×	1	ł	1	ı	ì	ı	ŧ	×	×	×	×	×	×	×	i	×	ı	1	×	×	×	×
	Data available	MA		×	×	×	× ×	×	1	1	1	1	1	ı	ı	×	×	×	×	×	×	×	ŧ	×	1	1	×	×	×	×
	Data	四		×	×	× :	× ×	×	1	1	1	1	ı	i	1	×	×	×	×	×	×	×	ł	×	×	1	×	×	×	×
ŀ	aV.	P		×	×	× :	××	×	ŀ	ı	1	ı	×	ı	1	×	×	×	×	×	×	×	ì	×	×	×	×	×	×	×
		l v		×	×	× ;	< ×	×	×	×	×	1	×	ł	ı	×	×	×	×	×	×	×	×	×	1	E	×	×	×	×
(uțu	у (дад√т	Yielo	í	2	8	ל ה	n 88	38	23	1	80	1	70			25	22	27	40	34	36	13	420	200	1	48	20	42	20	20
	y•) bu	inəq0 11)	0.00	0.010	010	010.	.040	.018	.020	† ! !			.018	1	1	.020	.020	.012	.012	.014	.020	.012	1	.018	.020	.020	.020	.020	.020	.020
Screen	erval:	Hqəd ini i)	000	887-817	188-198	196-206	452-462	598-608	548-558	172-178	(501-523) (540-561)	(538-560) (599-620)	210-240		1	382-392	430-440	219-229	185-195	306-316	144-154	442-452	110-230	119-190	215-225	215-225	396-408	452-462	457-468	632-644
		emsia ii)		3 7 ·	~ 7' ~	ታ *	יל" יל	7	7	7	m	m	~	1	ŀ				က	ぢ	4									m
rer	ı,) (•í	niaso (ir	,	4,	≪" "	դ, «	† 4	4	4	7	9	9	ιΩ	1	1	4	4	4	4	4	4	4	ω	ထ	4	Ŋ	4	4	4	4.
(7:	ıtion (i	EJGAS	6	2007	05 5 25 5 26 5 26 5 26 5 26 5 26 5 26 5 2	700	240	340	340	210	340	340	190	190	220	200	200	180	180	260	280	280	300	160	185	180	286	286	300	300
pə:	combret	Деяц	0,0	1700	1968	2060	1969	1969	1970	1	1970	1971	1970	1971	1971	1971	1971	1971	1971	1972	1972	1972	1972	1972	1968	1970	1973	1973	1973	1973
		ಜೆ	5	<u>₹</u>	<u></u>	รี ฮ็	£ £	<u>%</u>	8	Š	8W	₩8	F	10W	is S	ß	હે	ß	B	W.	Š	ž	₩	8W	1.0W	10W	ક્ર	ß	ર્જ	<u>M</u>
	Location	Ė	, 20	N .	<u> </u>	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		19N	19N	17N	19N	19N	19N	19N	18N	17N	17N	19N	NS.	18N	18N	18N	17	IN	18N	18N	18N	18N	19N	19N
	요	Sec	5	77	56	ე ი ე ი) -	31	31	22	31	31	29	34	32	Ŋ	Ŋ	28	28	ω,	Н	, - 1				56			25	25
	Owner		30	LA OLC OL FUDILIC WOFKS*	OD			U.S. Geological Survey-	do	C. L. Hendrick	Dixie Overland	go	H. W. Davenport	In Ofc of Public Works-			do			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			Dresser Minerals	Go	Jenkins WS	do	La Ofc of Public Works-	do		
	Well No.		מרבי אניז	WD-2115-	MD-2/8	MD-2/9	Wb-281	Wb-285	WD-286	Wb-290	Wb-297A-	Wb-297B-	Mp-300	Wb-302	Wb-305	Wb-306A-	WD-306B-	Wb-310	Wb-311	WD-312	Wb-313A-	Wb-313B-	Wb-314	Wb-315	Wb-316	Wb-317	WD-319A-	Wb-319B-	Wb-320A-	Wb-320B-

ഗ	ഗ	တ	Ø	Ø	×	×	Z	M	Z	ഗ	i	ı	ഗ	ı	ഗ	Ŋ	Ś	ഗ	Έ.	လ	Z	လ	ഗ	S	ß	Z	Z	
Д	Ω	ሲ	Ω	Д					Д	Д	Ω	Ω	Ω	Ω	Д	വ	Д	щ	Д	μ		Δ,	ρų	<u>.</u>	<u>с</u> ,	щ	<u>д</u> ,	
×	×	×	×	×	×	×	×	×	×	1	1	1	ı	1	ŀ	1	1	ı	1	1	1	ŀ	ı	1	1	١	ı	
×	×	×	×	×	×	×	×	×	×	1	1	1	į	1	ł	1	×	ı	1	ŧ	1	1	ı	ŧ	i	i	1	
×	×	×	×	×	×	×	×	×	×	×	ı	ı	i	1	ı	ŧ	i	1	×	i	ŀ	1	1	i	ı	1	ı	
×	×	×	×	×	×	×	×	×	×			ŧ	×	×	×	×	×	×	+			1	×	l U	×	×	×	
×	×	×	×	×	×	×		~	×	×	×	×	×	1	~:		1	-	1	т О	l ent			×		10		
4	2(26	3	57	2(36		2	2	1		1	1(1	8	1,200	20	7	1	4	4	7(,	4	χ.	15(
.020	.020	1	.020	.020	.020	.018	.020	.020	.020	.016	1	1	.010	1 1	.018	.030	.020	.018	.018	 		1	.020	.010	1	+	.012	
550-560	610-620	464-474	595-605	130-140	480-490	267-277	109-119	238-248	222-232	400-470	1		87- 92	1 1 1	93-113	223-263	(100-140) (144-159)	147-167	372-403	134-154	424-454	591-611	242-263	(110-120 (120-140	154-174	234-244	590-615	
Μ	Μ	m	7	m	m	m	m	m	Μ	ω	1	1	,—1	1	4	16	ব্য	~	~	7	7	~	m	4,	7	4	Μ	
4	4	4	4	4	Ą	4	4	Ą	4	∞	I	1	Ч	1	∞	24	7	4	9	9	4	4	9	4	Ą	4	9	
335	335	240	370	245	245	240	162	162	145	240	170	180	200	220	200	180	205	165	285	280	240	370	240	260	210	200	370	
1973	1973	1973	1974	1974	1974	1974	1975	1975	1975	1968	1975	1975	1975	1975	1975	1974	1972	1975	1973	1974	1969	1975	1969	1977	1977	1977	1978	
M8	‰	<u>136</u>	¥	8W	.¥.	i¥ o	10W	10W	10W	8	8	MG	8	8	R	ΩM	W6	ž	<u>18</u> 6	₩	M6	8	js.	8	LOW	10W	Š	
20N	20N	19N	20N	18N	18N	17N	l7N	17N	17N	20N	18N	18N	18N	18N	18N	19Ñ	18N	19N	17N	18N	17N	20N	18N	KI	19N	18N	20N	
30	30																21		74					14	35	24	25	
		J. R. Bishop	La Ofc of Public Works-	qo	qo	qo	do	qo	qo	U.S. Forest Service	U.S. Geological Survey-			qo	Sibley (m)	Minden (m)	Sibley (m)	Dixie Inn (m)	Heflin (m)	Dubberly (m)	Central WS	Germantown WS	Union Grove WS	Dixie Metals, Inc	McIntyre WS	Horseshoe Road WS	Germantown WS	
Wb-321A-	Wb-321B-	Wb-322	Wb-328	Wb-329A-	Wb-329B-	Wb-334	Wb-336A-	WD-336B-	Wb-337	Wb-341	Wb-342	Wb-343	Wb-345	Wb-346	Wb-347	Wb-349	Wb-354	Wb-357	Wb-358	Wb-359	Wb-361	Wb-362	Wb-365	Wb-376	Wb-377	Wb-381	Wb-397	

Table 8.--Chemical analyses of water from selected wells in the Arcadia-Minden area

(w se 1/64)	ŧ			
Manganese, dissolved		200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Iron, dissolved (µg/L as Fe)		1,400 1,200 1,200 1,200 1,200 1,400 1,400 1,300 1,300 1,300 1,300 1,500		220 220 300 300 170 20 20 20
Nitrogen, nitrate dis- solved (mg/L, as NO ₃)		0.10 00 00 00 00 00 00 00 00		0.1.00.1
Witrogen, nitrate total (mg/L as WO3)				
Solids, sum of constitu- ents, dissolved (mg/L)		88 35 37 142 142 193 193 193 193 193 193 193 193 193 193		123 166 377 154 164 250 187 264
Silica, dissolved (mg/L as SiO ₂)		222 223 233 25 25 25 25 25 25 25 25 25 25 25 25 25		7.4 10 10 32 33 31
Fluoride, dissolved (mg/L as F)		0 0 0 0 0 0 0 0 0 0		o Gaidaid
Chloride, dissolved (mg/L as Cl)		8.4 £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £		4 9 5 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Sulfate, dissolved (mg/L as SO ₄)		0.7 4 4 11 10 10 10 10 10 10 10 10 10 10 10 10		1.8 11.8 15.15 14.55 55.55
Carbonate (mg/L as (FCO		000000000000000000000000000000000000000		0000000
Bicarbonabe (mg/L as HCO_3)		46 46 47 47 47 47 47 47 47 47 47 47 47 47 47		112 106 250 88 117 117 126 128 170
Potassium, dissolved (mg/t as K)	r '8	8. 6. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	şy	2.3 2.9 2.9 3.7 2.0 1.1
Sodium, dissovled (mg/L as Na)	AQUIFE e Pari	6.3 112 112 113 114 115 116 117 117 118 119 119 119 119 119 119 119	·	45 140 25 49 73 56 56
Magnesiwn, dissolved (mg/l as Mg)	SPARTA AQUIFER Bienville Parish	1.8 6.3 4 4.5 5.2 1.2 5.2 1.2 5.2 1.2 5.2 1.2 5.2 1.2 5.2 1.3 1.3 5.2 1.3 5.2 1.3 5.2 1.3 5.2 1.3 5.2 1.3 5.2 1.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5	incoln Par	0.0 1.0 1.0 1.2 1.2 4.3
Calcium, dissolved (mg/L as Ca)	S in	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0		0.0 3.5 1.6 12 2.5 3.6 2.5
Hardness (mg/L as CaCO ₃)		8.1881018100000000000000000000000000000		0 8 34 8 8 14 14
Color (platinum-cobalt units)		25 25 25 25 25 25 25 25 25 25 25 25 25 2		10 15 10 10 0
(D°) sunteraque		23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5		21.0
(stinu) Hg		พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.		41.7.7.7.6
Specific conductance (sodmi)		75 44 44 45 46 47 48 48 48 48 48 48 48 48 48 48		190 215 618 188 222 340 258 411
Depth of well, (ft)		602 466 466 466 466 466 467 467 467		525 644 360 550 499 775 674 535
Date of sample		3-5-68 3-1-68 3-11-68 9-19-68 9-19-68 9-19-68 9-19-68 1-69 1-21-68 1-21-70 10-13-70 11-11-70 11-11-70 11-12-70 11-18-70		3-16-60 6-14-68 11-15-67 1-18-68 12-12-68 8-12-69 7-15-69
e &		***************************************		# # # # # # # # # # # # # # # # # # #
Location				138 721 188 188 198 198 198 198
X 58		834282 888 82228888 7 7 7 7 7 1 4 2 4 3 8 8 8 8 1 3 2 3 2 5 1 4 2 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		22 32 32 22 22 22 22 22 22 22 22 22 22 2
		11.0 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		34 8 53 53 8 53 53 8
Well No.		BE-19 BE-34 BE-34 BE-34 BE-34 BE-34 BE-34 BE-34 BE-136 BE-136 BE-136 BE-136 BE-136 BE-136 BE-136 BE-136 BE-146 BE-147 BE-		7777 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 9 9 9 9

	88 80 100 100 100 100 100 100 100 100 10		1	0 1 1 0 0 0 0 0 0 0
	1,100 1,100 1,100 1,100 2,200 2,200 2,200 2,200 1,700 2,200 1,700		4,500	440 1900 1,100 340 340 1,100 1,100 1,600 1
	6. 4 0.0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		0.60	0.20
	1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10			200.000.000.000.000.000.000.000.000.000
	125 165 169 169 161 166 172 172 172 172 172 173 173 173 174 174 174 177 177 177 177 177 177 177		166	181 187 187 975 595 130 145 525 525 526 521 521 521 521
	22 22 23 23 23 25 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25		1.8	11. 12. 10. 10. 11. 11. 10. 10. 10. 10. 10. 10
	444644444444444444444444444444444444444		0.1	0
	22 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2		33	10 9.2 360 130 130 130 130 6.9 6.9 6.0 5.0 71 71 71 71 71 71 71 71 71 71
	113 1.44 1.44 1.44 1.44 1.44 1.45 1		5.0	0.04 444 6.00 6.00 6.00 6.00 6.00 6.00 6
	000000000000000000000000000000000000000	ĺ	0	00000708700007777
	27.7.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.		100	176 178 412 412 86 134 134 134 134 134 144 141 173 173 173 173 173 173 173 173 173 17
G	91.892. 84.948 801.929 91.929	CUIFER	7.1	1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Paris	289 289 289 289 289 289 289 289 289 289	IZO A	8	68 70 240 240 240 1180 1180 1180 120
ebster	2446 6446	OX-CARR	4.9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32	22.22.22.22.22.22.22.22.22.22.22.22.22.	MILLO	18	244 46. 8. 4.444. 4.44.
	222 22 22 22 22 22 22 22 22 22 22 22 22		65	99 25 25 25 25 25 25 25 25 25 25 25 25 25
	20000000000000000000000000000000000000		70	30 0 10 0 20 0 20 0 20 0 0 0 0 0 0 0 0 0
	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0		25.5	23.0 23.0 23.0 24.0 24.0 22.0 22.0 22.0 22.5 22.5
	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8.1	
	190 179 179 179 179 179 179 179 179 179 179		320	308 305 1,790 1,790 1,060 164 684 684 409 310 907 1,020
	291 291 170 170 170 170 170 170 170 170 170 17		540	438 458 458 120 120 120 462 462 178 178 179 277 119 248 254 454 454
	11. 3-59 6-12-68 1-12-68 9-20-66 9-20-66 9-20-66 9-20-66 9-20-66 9-20-66 9-20-66 9-20-66 9-20-66 9-20-66 9-20-66 9-20-67 1-15-68 1-15-68 9-9-68 9-9-68 9-9-68 9-18-68 12-19-68 12-19-19-19-19-19-19-19-19-19-19-19-19-19-		468	9-20-65 4-11-68 4-15-68 7-17-68 2-17-69 3-18-71 7-17-69 3-18-71 7-17-74 7-17-74 10-17-74 2-17-75 2-17-75 2-17-75
	1 1 1 1 2 2 2 2 2 1 2 4 4 4 4 7 1 1 1 2 2 2 2 2 1 2 4 4 4 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4-	1
	***************************************		ř	*************
	1198 N 11		18N	K K I K K K I K K K I K K K I K K K I K K K I K K K K I K
	8884144208888888888888888888888888888888		15	4447 22 23 32 24 44 25 25 24 44 25 25 24 44 25 25 24 44 25 25 25 24 44 25 25 25 25 25 25 25 25 25 25 25 25 25
	WB-160 WB-161 WB-204 WB-253 WB-253 WB-253 WB-255 WB-255 WB-255 WB-257 WB-260 WB-2773 WB-319 WB-315		BI~104	WB-259 WB-250 WB-270 WB-270 WB-210 WB-290 WB-396 WB-3068 WB-336A WB-336A WB-336A WB-336A WB-336A

Table 9.-Availability of ground water at population centers

		[AQUIFER:	Sparta, Sp	xarta Sa	and; Wil	∞x, Wild	xx-Carri	zo aquife	er)	
Water system	Aquifer	Well No.	Depth of well(s) (ft)	Depth to top of Sparta (ft)	Depth to base of Sparta (ft)	Depth to top of Wilcox- Carrizo (ft)	Depth to base of fresh- water	Average daily pumpage, 1980 (Mgal/d)	Popula- tion served	Remarks
				Bien	ville Pa	arish			***************************************	
Alabama Water System	Sparta	Bi-147, 240	493	265	a ₈₀₀		a ₈₀₀	0.052	735	
Village of Bryceland	Sparta	Bi-191	425	55	550		535	.014	160	(Located near freshwater-
Village of Taylor	Sparta	Bi-90B	300	0	^a 450	^a 650	1,000	.031	400	saltwater interface in Wilcox-Carrizo aquifer.
Town of Arcadia Mt. Calm Water System		Bi-19, 36 Bi-198	594, 602 476	a ²⁰⁰	^a 780 ^a 700		^a 780 ^a 700	.187	3,700 200	
Town of Gibsland	Sparta	Bi-34, 35, 157	399-466	0	470		435	.056	1,380	
Town of Mt. Lebanon	Sparta	Bi-177	514	0	^a 600	~~~~	520	.014	184	
				Clai	corne Pa	rish				
South Claiborne Water System	Sparta	Cl-145, 146 147	567-610	295	750		710	0.143	2,100	
Village of Athens				a ₂₀₀	a ₈₀₀	a _{1,100}	1,200	.048	427	Wilcox may contain fresh- water but no water-quality
										data are available.
				Lin	coln Par	ish				
Fellowship Water System Mt. Zion Water System Village of Simsboro	Sparta	L-90 L-145 L-34, 70		a ²³⁰ 200 210	825 700 795		a765 a550 725	0.038 .036 .064	500 800 700	
			3207 011		ster Par	igh		,004	700	···········
Control Water Custom	726 3	11. 202								
Central Water System Dixie Overland Water System			454		a	385	590 a	0.034	450	
Germantown Water System		Wo-297B, 406- Wo-362, 397	620, 640 611, 615	220 155	^a 740 680		^a 740 685	.056 .082	600 1,100	
Gilark Water System		Wb-260	442	0	455	~~~~	455	.016	200	
Jenkins Water System CIntyre Water Works		Wb-316, 317	225			210	235	.036	600	
District Nown of Dubberly		Wb-276, 377~~ Wb-271, 359	190, 174 154, 220	0	260	^a 330	^a 200 255	.036	500 650	
City of Minden	Sparta	(Wb-157, 159,) 160, 161, (264, 269, 349	206-309	^a 60	315	~~~~	300	2.578	15,332	Sands capable of meeting increased demands are avail- able; preferred areas are north or east of Minden when sands are thicker.
Horseshoe Road Water						а	a			- warrang tel to the trick to
System		Wb-381	244		ā	^a 200	a ₂₅₀	.008	150	
Union Grove Water System-		Wb-365	263	10	a 270	~~~~		.022	300	
Village of Dixie Inn			75, 167	45	~215		a215 a215	.044	500	
Village of Heflin	MITCOX	Wb-250, 358	403, 458			370	a460	.049	500	
Village of Sibley	Sparta	Wb-247, 218 354, 347	107, 170	50	170		170	.076	1,312	(Freshwater-saltwater inter- face in Wilcox is at souther edge of Sibley.

a_{Estimated.}

Table 10.--Petroleum wells and test wells used for geologic control

Elevation	145 133 176 305 201 201 351 351 367 377 364 364 365 366 366 367 377 377 377 377 377 377 377
Well name	M. J. Derryberry Gas Unit No. 1- Lewis Realty Corp No. B-9- G. R. Green No. 1 Darrett Unit No. 1 A. H. Sims No. 2 Coleman No. A-1 Halsey-Bishop-Lewis No. 1 Henry No. B-1 L. Kimbell No. 1 Myite No. A-1 Henry No. B-1 Joe Camp No. 1 Joe Camp No. 1 Joe Camp No. 1 Cleo Fay Marks No. 1 Clayton Spurlock No. 1 Barcy No. 1
Operator	Atlantic Refining Co- Hunt Oil Co- Hassie Hunt Trust- A. J. Hodges Industries- H. W. Klein- Continent Crowe Trustee- Continental Oil Co- David Crowe Trustee- Continental Oil Co- Continental Oil Co- H. W. Klein et al- Jones & Linam- George Belchic, Jr- H. W. Klein et al- Franks-Gilster Nemours Corp- T. L. Mydland- R. J. Caraway- State's Oil Co- Carter Oil Co- Carter Oil Co- Carter Oil Co- Contes Drilling
~~~	\$4\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Location c. T.	200 200 200 200 200 200 200 200 200 200
%	19 20 30 30 30 30 30 30 30 30 30 30 30 30 30
Map No. (pl. 1)	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Table 10.---Petroleum wells and test wells used for geologic control--Continued

Operator James Muslow
Gas & Oil Co
*
Products Co
Co
Sentel1
Hercules Petroleum Co. Inc
st Natural Products Co
k Lunsiora
Phillips Petroleum Co
1
Co
*****
*
·
***************************************

222	269	195	337	318	343	270	331	281	239	298	204	219	186	300	280	244	174	180	205	171	205
Grace B. Cooke No. 1	Batton Mo. 1	Willie Ward No. 1	Frazie No. 1	Hays No. 1	Mable No. 1	Ozley No. 1	Colbert No. 1	Youngblood Oil Unit IV No. 1	E. W. Merritt No. 2	E. W. Merritt No. 1	Daisy Wardward No. 1	Colbert-Davis Unit No. 1	Woodward Walker No. 1		Test Hole No. 1	Gray-West Unit No. 1	Drew Unit No. 1	R. A. Reed No. 1	Drew No. B-1	M. Braswell No. 1	Willis No. 1
go		H. L. Hunt	Murphy Corp	Ark-La Gas Co	Lion Oil Co		GO	Atlantic Refining Co	Pierce & Crow	Bomar Inc	Carter Oil Co	do	Garfield Pasternek	Stewart Oil Co	Op	Atlantic Refining Co		go		Kin Ark Oil Co	W. J. McEllwee
8	186	10W	4W	4W	ØM.	ОW	M9	M	K	×	.MS	SW.	M8	8W	<u>`</u>	8	ES.	S.	8	3	10W
18N	18N	18N	17N	17N	17N	17N	178	17N	17N	17N	L7N	17N	17N	17N	17N	17N	171	17N	17N	17N	17N
27	36	25	~	근	12	13	14	4	13	24	7	Μ	23	o)	16	ന	な	4	Ŋ	∞	16
69	70	71	72	73	74	75	9/	77	78	79	80	81	82	83	84	85	86	87	88	83	06

•		
•		
i di		
•		

NGVD

-100

700 900. 500 400 300 200° *100

200 300'

PLATE 3. GEOLOGIC SECTIONS OF THE ARCADIA-MINDEN AREA, LOUISIANA.

1300 1200