

STATE OF LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT

WATER RESOURCES
TECHNICAL REPORT
NO. 43

GROUND-WATER HYDROLOGY OF LIVINGSTON, ST. HELENA, AND PARTS OF ASCENSION AND TANGIPAHOA PARISHES, SOUTHEASTERN LOUISIANA

Prepared by
DEPARTMENT OF THE INTERIOR
U.S. GEOLOGICAL SURVEY

In cooperation with LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT

1988

STATE OF LOUISIANA

DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT

In cooperation with the

DEPARTMENT OF THE INTERIOR

U.S. GEOLOGICAL SURVEY

Water Resources

TECHNICAL REPORT NO. 43

GROUND-WATER HYDROLOGY OF LIVINGSTON, ST. HELENA, AND PARTS OF ASCENSION AND TANGIPAHOA PARISHES, SOUTHEASTERN LOUISIANA

Вy

Dan J. Tomaszewski

U.S. Geological Survey

Published by

LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT

Baton Rouge, Louisiana

STATE OF LOUISIANA

BUDDY ROHMER, Governor

DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT NEIL L. WAGONER, Secretary

Cooperative projects with the DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director

For additional information write to:

Darwin Knochenmus District Chief U.S. Geological Survey P.O. Box 66492 Baton Rouge, LA 70896-6492

Telephone: (504) 389-0281

Z. "Bo" Bolourchi
Chief, Water Resources Section
Louisiana Department of
Transportation and Development
P.O. Box 94245
Baton Rouge, LA 70804-9245
Telephone: (504) 379-1434

CONTENTS

	Page
Abstract	1
Introduction	2
Purpose and scope	2
Location and setting of the study area	2
Methods of investigation	4
Well-numbering system	4
Acknowledgments	5
General geology	5
Ground-water hydrology	5
Shallow aquifer unit	8
Extent and thickness	8
Ground-water recharge, movement, and discharge	10
Water levels	11
Aquifer characteristics	13
Water quality	15
Aquifer unit 1	16
Extent and thickness	16
Ground-water recharge, movement, and discharge	17
Water levels	17
Aquifer characteristics	18
Water quality	19
Aquifer unit 2	20
Extent and thickness	20
Ground-water recharge, movement, and discharge	22
Water levels	22
Aquifer characteristics	24
Water quality	24
Aquifer unit 3	26
Extent and thickness	26
Ground-water recharge, movement, and discharge	27
Water levels	30
Aquifer characteristics	32
Water quality	32
Base of freshwater	32
Summary and conclusions	34
Selected references	35
Basic data	35 37
Danie at the second of the sec	37
ILLUSTRATIONS	
[Plate is at back]	
Plate 1. Geohydrologic sections A-A', B-B', and C-C' in Ascension, Livingston, St. Helena, and Tangipahoa Parishes, south- eastern Louisiana.	
Figure 1. Map showing location of study area, control wells and	
lines of geohydrologic sections	3
 Generalized geohydrologic section showing fresh and salty ground water in the alternating sands and clays of 	
Livingston and St. Helena Parishes	7

ILLUSTRATIONS--Continued

Figure	3.		Page
	4.	Hydrographs of wells Li-26B and -113, representative of	
	5.	water levels in the lower sand bed of aquifer unit 1 Map showing potentiometric surface of aquifer unit 2	19
	6.	tative of water levels in the middle and lower sand	23
	7.	The state of the s	25
	8.	water levels in the upper and lower sand beds of	29
	9.	aquifer unit 3 Map showing altitude of base of fresh ground water	31 33
		TABLES	
Table	1.	Correlation of aquifer units in Livingston and St. Helena Parishes with aquifer units in adjacent parishes	-
	2.	Altitude of the upper and lower sand beds in the shallow	6
	3.	aquifer unit in Livingston and St. Helena Parishes Water levels in the upper and lower sand beds in the shallow aquifer unit in Livingston and St. Helena	9
	4.	Parishes	13
	5.	unit 1 in Livingston and St. Helena Parishes	14
	6.	in Livingston Parish	18
	7.	aquifer unit 2 in Livingston and St. Helena Parishes Hydraulic characteristics of correlative sand beds in aquifer unit 2 as determined by aquifer tests in the	21
	8.	Baton Rouge area	26
	9.	unit 3 in Livingston and St. Helena Parishes	28
1	.0.	unit 3 in Livingston and St. Helena Parishes Records of selected water wells in Livingston and St.	30
1	1.	Helena Parishes Selected common constituents in ground water in	38
1	2.	Livingston and St. Helena Parishes Selected minor elements and radionuclides in ground water	43
1	з.	at selected sites in Livingston and St. Helena Parishes Selected organic chemicals, insecticides, and herbicides in the shallow aquifer unit in Livingston and St. Helena	51
		Parishes	53

CONVERSION FACTORS AND ABBREVIATIONS

For the convenience of readers who may prefer to use metric (International System) units rather than the inch-pound units used in this report, values may be converted by using the following factors:

Multiply inch-pound unit	By	To obtain metric unit
inch (in.)	25.40	millimeter (mm)
foot (ft)	0.3048	meter (m)
foot per day (ft/d)	0.3048	meter per day (m/d)
foot per year (ft/yr)	0.3048	meter per year (m/yr)
foot squared per day (ft²/d)	0.09290	meter squared per day (m²/d)
foot per mile (ft/mi)	0.1894	meter per kilometer (m/km)
gallon per day (gal/d)	0.003785	cubic meter per day (m3/d)
gallon per minute (gal/min)	0.06309	liter per second (L/s)
	5.450	cubic meter per day (m3/d)
mile (mi)	1.609	kilometer (km)
million gallons per day	3.785X106	liter per day (L/d)
(Mgal/d)	3.785X103	cubic meter per day (m3/d)
square mile (mi ²)	2.590	square kilometer (km²)

Temperature in degrees Celsius (°C) can be converted to degrees Fahrenheit (°F) as follows: °F = 1.8 X °C + 32.

<u>Sea level</u>: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called "Sea Level Datum of 1929."

						•	
		÷					
· ·							
•							
• ·							
					•		
•							Ċ.
							•
			·				
	`						
•							4.2 1.
		•					
							4%
							r.
•							
.*							
•							
				and the second s			

GROUND-WATER HYDROLOGY OF LIVINGSTON, ST. HELENA, AND PARTS OF ASCENSION AND TANGIPAHOA PARISHES, SOUTHEASTERN LOUISIANA

By Dan J. Tomaszewski

ABSTRACT

Livingston and St. Helena Parishes, located in southeastern Louisiana, obtain ground water from the regionally extensive Southern Hills aquifer system. Within this system, nine major freshwater sand beds (sands containing water with less than 250 milligrams per liter of chloride) have been grouped into four aquifer units. From youngest to oldest, the aquifer units are the shallow aquifer unit and aquifer units 1, 2, and 3. Aquifer unit delineation was based on hydraulic head, water-quality, and geophysical data.

Sand beds within these units contain freshwater that extends to 2,500 feet below sea level in northern St. Helena Parish and to 3,200 feet below sea level in southeastern Livingston Parish. In extreme southern Livingston Parish freshwater is present to altitudes of only 500 feet below sea level.

Recharge to the aquifer system occurs in St. Helena Parish and south-western counties of Mississippi where the shallow aquifer unit receives direct recharge from rainfall and transmits recharge to sands in the underlying units. Ground-water movement in the shallow aquifer unit is generally in a southerly direction from recharge areas. Discharge occurs as pumpage or ground-water leakage in southern Livingston Parish. Ground-water movement in aquifer units 1, 2, and 3 is generally in a southwesterly direction toward pumping centers in the Baton Rouge area.

Water levels in most units are declining about 0.5 to 2.5 feet per year; past water-level declines have been greater than 5 feet per year in sands intensively pumped in the Baton Rouge area. In 1985, ground-water withdrawals totaled about 7 Mgal/d (million gallons per day) in Livingston and St. Helena Parishes, and about 120 Mgal/d were withdrawn in nearby East Baton Rouge Parish.

Hydraulic conductivity of sand within aquifer units ranges from 30 to 200 feet per day. Transmissivity ranges between 3,000 and 32,000 feet squared per day.

Freshwater from the Southern Hills aquifer system is a soft sodium bicarbonate type, although the shallow aquifer unit in St. Helena Parish and northern Livingston Parish contains a mixed ionic type water that has a low concentration of dissolved solids. Chemical analyses of ground water for selected minor elements, insecticides, herbicides, and radionuclides showed that none of these constituents exceed primary or secondary drinking water standards of the U.S. Environmental Protection Agency.

INTRODUCTION

Livingston, St. Helena, and parts of adjoining Ascension and Tangipahoa Parishes are adjacent to and heavily impacted by large ground-water withdrawals in the Baton Rouge area; the withdrawals have caused local or regional declines of water levels in most sand beds. Ground water in Livingston and St. Helena Parishes is primarily obtained from interlayered sand beds, which form a regional aquifer system—the Southern Hills aquifer system (Buono, 1983). The aquifer system is the principal source of drinking water for the northern half of southeastern Louisiana and southwestern Mississippi. Localized shallow sands overlying this regional aquifer system yield smaller amounts of fresh ground water.

Ground-water use in the study area and nearby parishes—East Baton Rouge, East Feliciana, West Feliciana, St. Tammany, Tangipahoa, and Washington—totaled about 200 Mgal/d in 1985 (D.L. Lurry, U.S. Geological Survey, written commun., 1986). Ground-water use is projected to increase and may reach about 280 Mgal/d by the year 2000 (Urban Systems Associates, Inc., 1982). Of the 1985 total, about 120 Mgal/d (60 percent) was used in East Baton Rouge Parish, and approximately 15 Mgal/d (8 percent) was used in Tangipahoa Parish. About 7 Mgal/d (4 percent) was used in Livingston and St. Helena Parishes.

Purpose and Scope

The purpose of this report is to describe the ground-water resources of Livingston and St. Helena Parishes and present information of the hydraulic characteristics and water quality of the aquifer units. The report will complement available information on the heavily pumped aquifers in the Baton Rouge area and Tangipahoa Parish and make available background data for future reference and development of ground-water resources.

Data used in this study were collected, analyzed, and interpreted during the period from October 1982 to September 1985. Reports of previous investigations and basic data were reviewed. Water-well and stratigraphic test-hole data, consisting of geophysical logs, drillers logs, well completion reports, and geologic logs, were compiled and used to identify, correlate, and define the geohydrologic framework. A reconnaissance study of the area was made in September 1983, and field data were collected periodically thereafter. In areas where data were lacking, wells were located and sampled or shallow test holes were drilled for collection of chemical, hydrologic, and lithologic data.

Location and Setting of the Study Area

The study area (fig. 1) includes all of Livingston and St. Helena Parishes and parts of Ascension and Tangipahoa Parishes. Located in the central part of southeastern, Louisiana, Livingston and St. Helena Parishes collectively total about 1,110 mi² (square miles) in area. The Amite and Tickfaw Rivers are two major streams, and both flow southward into Lake Maurepas. Hills in St. Helena Parish have an altitude of more than 300 ft (feet) while the southern part of the study area generally contains terraces of low relief approaching sea level. Climate is humid subtropical. At

Figure 1.--Location of study area, control wells and lines of geohydrologic sections.

Clinton, about 10 mi (miles) west of the study area, average annual temperature and precipitation are about 19.0 °C and 59 in. (inches), respectively (National Oceanic and Atmospheric Administration, 1982). Average monthly temperatures range from about 10.5 °C in January to about 27.0 °C in July. Precipitation is fairly well distributed throughout the year; the averages range from 3 in. in October to 6.2 in. in March.

Methods of Investigation

Correlation of aquifer units were made using water-level data, geophysical logs of water wells, drillers logs, geologist logs, oil wells, and test holes. Although each unit is composed of one or more areally extensive sand beds, extensive areal correlation of individual sand beds in Livingston and St. Helena Parishes is extremely difficult. Multilayered sand, gravel, and clay deposits interfinger throughout the parishes. Because of the lenticular nature of these deposits, abrupt lateral changes are common.

Where possible, geohydrologic sections in this report were constructed to intersect existing geohydrologic sections contained in previous studies of adjacent parishes. The geohydrology of adjacent parishes is discussed in the following reports: the Baton Rouge area by Meyer and Turcan (1955), Morgan (1961), and Rollo (1969); the Florida Parishes by Winner (1963); East and West Feliciana Parishes by Morgan (1963); the Geismar-Gonzales area by Long (1965); Tangipahoa and St. Tammany Parishes by Nyman and Fayard (1978); and the Gramercy area by Dial and Kilburn (1980). Additional reports on ground-water hydrology in or near the area are listed in "Selected References" of this report.

Water-level data collected in previous studies and during this study were compiled and analyzed. Potentiometric maps were constructed and the approximate direction of ground-water flow was determined. Water-level data were used to delineate water-level trends and construct hydrographs. Because limited aquifer-test data were available in the study area, data from aquifer tests of correlative sands in adjacent areas were used to describe hydraulic characteristics of aquifer units.

Chemical characteristics were determined from analyses available from previous studies and analyses of water samples collected during the study period. During this investigation, samples were analyzed for selected common inorganic constituents, minor elements, organic chemicals, and radionuclides.

Well-Numbering System

Wells inventoried by the U.S. Geological Survey in Louisiana are identified by a parish abbreviation followed by a sequential number. In this report the parish abbreviations An, Li, SH, and Ta refer to Ascension, Livingston, St. Helena, and Tangipahoa Parishes, respectively. Numbers following these abbreviations are assigned sequentially in the order in which a well is inventoried. Oil and gas test wells are identified by a five or six digit serial number. Locations and well numbers of selected wells in the study area are shown in figure 1.

Acknowledgments

The author wishes to acknowledge private well owners, managers of public and industrial water systems, and government agencies who allowed access to their wells or supplied hydrologic data. Drillers working in the area supplied logs and well data. The Louisiana Department of Transportation and Development was especially helpful in providing sites for test drilling used to obtain subsurface geohydrologic information.

The study was made through a cooperative program between the U.S. Geological Survey and the Louisiana Department of Transportation and Development.

GENERAL GEOLOGY

Sediments in Livingston and St. Helena Parishes generally consist of a series of deltaic deposits. The deposits are chiefly composed of unconsolidated interbedded sands and clays which dip and thicken in a southerly or gulfward direction. Changes in sea level, subsidence, and uplift have influenced deposition.

Gulfward land advance and deposition of sediments that now form the Southern Hills aquifer system began during the Miocene age and continued into the Holocene age. Land advances into the gulf, however, were periodically interrupted when gulf waters transgressed inland across previously deposited deltaic plains. The transgression and regression of coastal waters (which resulted from the submergence and emergence of the coastal area caused by changes in sea level during glacial and interglacial intervals) created a complex series of interbedded deltaic sand and clay, part of which now form the aquifer system underlying Livingston and St. Helena Parishes. The aquifer system is further complicated by alluvial incision and subsequent deposition of sediment at coastal margins.

Regional structural features affecting the geology and physiography of Livingston and St. Helena Parishes are the Southern Mississippi Uplift in southwestern Mississippi and the Baton Rouge fault in southern Livingston Parish (Buono, 1983, p. 6). The geology of the area is presented in reports by Fisk (1944) and Howe (1962).

GROUND-WATER HYDROLOGY

In this report, the Southern Hills aquifer system is divided into aquifer units similar to hydraulic zones described by Morgan (1963, p. 16-20). The aquifer units are shown in table 1, figure 2, and on plate 1. Four aquifer units which contain nine sand beds are defined in Livingston and St. Helena Parishes. Each unit is composed of one or more areally extensive sand beds and smaller localized sands; many of the beds are lenticular. The base of a unit is generally defined by the last extensive sand bed in the unit and is generally underlain by an areally extensive clay unit within the sedimentary sequence of freshwater sands. Freshwater, for this report, has less than (<) 250 mg/L (milligrams per liter) chloride.

Table 1. --Correlation of aquifer units in Livingston and St. Helena Parishes with aquifer units in adjacent parishes

	s, Tangipahoa Parish			nd Shallow aquiferGonzales-New Orleans aquifer		Upper Ponchatoula aquifer		Lower Ponchatoula aquifer	יַל יִּם	boov seli	Kentr squi	Tchefuncta adulfer		Γ	
Livingston and	St. Helena Parishes,	this report		Upper sand bed		Lower sand	•		Upper sand bed Lower sand bed	Upper sand bed		bed	Upper sand bed	Lower sand	9
Liv	St. He	ب	. unit		noit Lifer Ainit	adn	; ;	л 	əliupA Jinu I	ηe	Aquif Jinu S		J.	Aquife tinu 5	
	East Feliciana	Parish	Aquifer unit		Undifferen-	deposit			Zone 1		Zone 2		Zone 3		2 1 12 12 14 15 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15
Baton Rouge area,	Geismar-Gonzales area,	Gramercy area		Gonzales-New Orleans aquifer	"400-foot" sand	"600-foot" sand	"800-foot" sand	"1,000-foot" sand	"1,200~foot" sand	"1,500-foot" sand	"1,700-foot" sand	"2,000-foot" sand	"2,400-foot" sand	"2,800-foot" sand	1 100 1065 4 11.
Southeastern	Louisiana			Local shallow aquifers		we	sks	ıəliup	s silih r	ızəyan	os	<u> </u>			Morgan 1963 3 100
		Series		Rolocene and	Pleistocene					Pliocene	 		Miocene		2
		System		usry	Quater				۸.	ertiar	I		····		1 Buono. 1983

6

Figure 2.--Generalized geohydrologic section showing fresh and salty ground water in the alternating sands and clays of Livingston and St. Helena Parishes.

Grouping of the sand beds is based on hydraulic head, geophysical, and water-quality data. It is important to emphasize that although the beds are grouped into aquifer units, individual sand beds within the unit may hydraulically interact with each other and that beds in one unit may be in hydraulic contact with sand beds in adjacent units. Thus, aquifer-unit boundaries, as described in this report, are not discrete boundaries which make one unit independent of another.

Table 1 includes a brief summary of the aquifer units, major sand beds contained in each unit, and correlation of units with aquifer units in adjacent areas. A more detailed discussion of each aquifer unit and its component sand beds follows.

Shallow Aquifer Unit

The shallow aquifer unit consists of numerous interbedded lenses of gravel, sand, silt, and clay which form two major sand beds containing freshwater. As shown on plate 1, section A-A', in southern Livingston Parish an upper sand bed overlies an extensive lower one. Where the upper and lower sand beds are both present they are separated by clay containing thin sand deposits.

Extent and Thickness

The upper and lower sand beds of the shallow aquifer unit extend into adjacent parishes and can be correlated with aquifer units in adjacent areas. The upper sand bed is correlative with the Gonzales-New Orleans aquifer in the Geismar-Gonzales area of Ascension Parish, Tangipahoa Parish, and the Gramercy area. The Gramercy area, as described by Dial and Kilburn (1980), includes most of St. James Parish, the western half of St. John the Baptist Parish, and the southern part of Ascension Parish. The lower sand bed of the shallow aquifer unit correlates with the undifferentiated upland deposits in East Feliciana Parish and the "400-, "600-, and possibly the 800-foot" sands of the Baton Rouge area. East of the study area in Tangipahoa Parish, the lower sand bed is correlative with the upper Ponchatoula aquifer, and part of the lower Ponchatoula aquifer and is in hydraulic contact with the shallow aquifer described by Nyman and Fayard (1978). The lower sand bed includes the Citronelle Formation in southwestern Mississippi.

Lithologic samples collected from correlative sands in Ascension Parish, the Gonzales-New Orleans aquifer, indicate sediments contained in the upper bed consist of fine to very coarse sand and gravel (Long, 1965, p. 12). The upper sand bed is continuous in areas of Livingston Parish south of the Baton Rouge fault. The upper bed thins or divides into a series of thin lenses of sand a few miles north of the fault (pl. 1, section A-A') and loses identity as a major geohydrologic unit. In areas south of the Baton Rouge fault (pl. 1, section A-A'), the upper sand bed ranges from about 130 to 240 ft in thickness and generally occurs between 200 and 500 ft below sea level. Altitudes of the top and bottom of the upper and lower sand beds of the shallow aquifer unit, as determined from electric and geologist logs at selected sites (fig. 1), are shown in table 2. Approximate sand thickness contained in each

Table 2.—Altitude of the upper and lower sand beds in the shallow aquifer unit in Livingston and St. Helena Parishes

[In feet, above or below sea level]

Well or permit number	Altitude of top of sand bed	Altitude of base of sand bed	Well or permit number	Altitude of top of sand bed	Altitude of base of sand bed
	Upper sand be	»d	Lowe	er sand bedC	ontinued
Li-88 Li-100 Li-114 Li-196 45026 46074	-278 a-319 a-113 -205 -252 -305	-515 -449 -379 -368 -417 -485	SH-9 SH-30 SH-32 SH-33 SH-35 SH-39	a142 a155 a179 a126 a180 a120	-180 -277 -168 -348 -11 -335
	Lower sand	bed	SH-40 SH-65	106 97	-276 -121
Li-56 Li-77 Li-88 Li-91 Li-99 Li-100 Li-114 Li-151 Li-171 Li-184 Li-204	a-240 a-455 b-732 a-212 -254 a-563 a-571 a-241 a-37 -275 a-81	-774 -813 -1,118 -680 -604 -1,001 -996 -761 -383 -658 -448	26360 37171 45026 46074 47180 54224 90389 165286 166874 167768 171615 174478	a 159 a 154 a - 462 a - 795 c - 35 a c - 69 b - 461 a - 215 a - 249 a - 153 a - 232 a c - 69	-107 -131 -837 -1,135 -95 -200 -835 -705 -432 -383 -680 -246

a Sand bed contains lenses of clay.

C Sand bed contains salty water at base.

Top of log interval.

bed at a particular well can be determined from table 2 by subtracting the altitude of the top of the sand bed from the altitude of the bottom of the bed. The depth below land surface of the sand bed can be determined by adding the altitude of land surface to the altitude of the top and bottom.

Analysis of test-hole samples from selected sites in St. Helena Parish indicates that sediments in the lower bed of the shallow aquifer unit are generally medium to coarse sand interbedded with gravel and clay. Lithologic samples collected during test drilling were from depths less than 100 ft below land surface. Additional lithologic samples indicate that sediments equivalent to the lower bed generally range from fine to medium in adjacent East Baton Rouge Parish (Meyer and Turcan, 1955, p. 28).

The lower sand bed of the shallow aquifer unit is areally extensive throughout the study area. In St. Helena Parish, the lower bed is present at or near land surface (pl. 1, sections A-A', B-B'). This bed extends to about 200 ft or less below sea level in northern parts of the parish increasing to about 300 ft or more below sea level in southern St. Helena Parish. Throughout St. Helena Parish, the base of the lower sand bed dips in a southerly direction at 10 to 15 ft/mi (feet per mile). In Livingston Parish, the dip increases between 25 and 55 ft/mi. Near Interstate Highway 12 (I-12) in central Livingston Parish (pl. 1, section C-C'), the lower sand bed generally occurs between 200 and 800 ft below sea level. South of the Baton Rouge fault the lower sand bed is present 1,000 ft or more below sea level and locally contains salty water.

Thickness of the lower sand bed typically is more than 200 ft in Livingston and St. Helena Parishes. In St. Helena Parish, the lower bed ranges between 150 and 400 ft in thickness. Thickness is generally greater in western St. Helena Parish because of westward thinning of clay and replacement with sand at the base of the interval. Sand thickness also increases in a southerly direction. In Livingston Parish, the lower bed generally is 300 to 400 ft or more in thickness.

Ground-Water Recharge, Movement, and Discharge

The lower sand bed of the shallow aquifer unit receives direct recharge from rainfall in much of St. Helena Parish (fig. 2) and adjacent counties in southwestern Mississippi, where permeable sands are exposed at or near land surface. Recharge from rainfall to the lower sand bed is transmitted down gradient, from higher altitudes in St. Helena Parish and Mississippi to lower altitudes in Livingston Parish, as recharge to the lower sand bed in Livingston Parish. Recharge from the lower bed to the upper bed occurs by vertical leakage through clays separating the upper and lower sand beds of this aquifer unit. Additional recharge to the shallow aquifer unit occurs in Livingston Parish from upward movement of water from the underlying aquifer unit 1 and locally in northern Livingston Parish by downward percolation of water from overlying sand and clay. In much of Livingston Parish, water levels in aquifer unit 1 are higher than water levels in the shallow aquifer unit. Because water levels are higher in aquifer unit 1, vertical leakage into the shallow aquifer unit occurs through the confining clay or in areas where sand lenses connect the units.

Although local recharge occurs from percolation of rainwater through overlying sand and clay in northern Livingston Parish, direct recharge from rainfall to the shallow aquifer unit in most of Livingston Parish is restricted by a surface clay confining unit. In Livingston Parish, clay is generally present at or near land surface. Section A-A' (pl. 1) shows a progressively thickening clay lense covering the upper and lower sand beds. Near the Livingston-St. Helena Parish border, this clay is about 25 ft in thickness and generally thickens southward. Near I-12, in central Livingston Parish (pl. 1, section C-C'), the clay is more than 200 ft thick. This overlying clay unit is generally extensive both in areal distribution and thickness in central and southern Livingston Parish.

Ground-water movement in the shallow aquifer unit is generally in a southerly direction, away from recharge areas in St. Helena Parish. Figure 3 is a potentiometric map of the shallow aquifer unit constructed from data collected in May 1984. Generally, ground water moves perpendicular to the potentiometric contours, moving from higher potentiometric contours to lower potentiometric contours. Hydraulic gradients are about 8 ft/mi in the northern half of the study area (fig. 3). In some areas of St. Helena Parish streams have dissected the land surface, and the lower sand bed is hydraulically connected with these streams (fig. 3). Hydraulic gradients trend toward stream valleys and the shallow aquifer unit locally discharges into these streams, sustaining streamflow. The Amite and Tickfaw Rivers influence ground-water flow in the shallow aquifer unit in St. Helena Parish. Hydraulic gradients may be 20 ft/mi or more near these rivers (fig. 3).

Because an overlying confining bed of clay is present, ground water in the shallow aquifer unit in Livingston Parish is under confined conditions. Hydraulic gradients generally decrease from north to south about 4 ft/mi or less in Livingston Parish, and potentiometric contours are not influenced by stream valleys. However, in northwestern Livingston Parish, the hydraulic gradient is affected by large ground-water withdrawals in the Baton Rouge area. Near Denham Springs and Watson, hydraulic gradients decrease in a general southwesterly direction toward Baton Rouge.

Discharge from the shallow aquifer unit occurs by flow into streams in St. Helena Parish, by upward seepage in southern Livingston Parish, by withdrawals, and by lateral flow into the Baton Rouge area. Withdrawal from the shallow aquifer unit in Livingston and St. Helena Parishes is small. Most of the wells screened in the shallow aquifer unit are used for domestic supply and have a low yield. Table 10 (at back) contains detailed information on selected water wells in the study area. Two industrial wells in St. Helena Parish, SH-19 and -42, have yields of 200 and 85 gal/min (gallons per minute), respectively. Records in adjacent parishes, however, indicate wells with discharges of 500 gal/min or more can be constructed in equivalent sands of the shallow aquifer unit. Water is not withdrawn for industrial use from wells in the shallow aquifer unit in Livingston Parish. Some wells for irrigation, livestock, and public supply yield water from the shallow aquifer unit.

Water Levels

Water levels in the shallow aquifer unit ranged from less than 10 ft above sea level in extreme southern Livingston Parish to more than 250 ft above sea level in northern St. Helena Parish in May 1984 (fig. 3). The altitude of water levels as related to land surface can be determined by algebraically subtracting the water-level measurement from the altitude for that well. The altitude of all wells mentioned in this report is shown in table 10.

Continuous long-term data are not available to describe water-level trends within the shallow aquifer unit in Livingston and St. Helena Parishes. Intermittent water-level data collected at selected sites are shown in table 3. These data indicate no appreciable water-level decline in St. Helena

Figure 3. -- Potentiametric surface of the shallow aquifer unit, May 1984.

Table 3.--Water levels in the upper and lower sand beds in the shallow aquifer unit in Livingston and St. Helena Parishes

Well number	Date measured	Water level in feet, above sea level	Well number	Date measured	Water level in feet, above sea level
	Upper sar	nd bed]	Lower sand b	edContinued
Li-174	8-31-76 10-17-83 5-15-84	7.3 8.0 7.20	Li-122	7-15-66 3-28-84	24.40 18.50
***************************************	Lower sar	nd bed	Li-164	3- 5-74 12-19-84	25.05 20.06
SH-12	7-11-66 10- 7-83 5- 4-84	246.19 245.41 247.09	Li-167	3- 5-74 4- 4-76 5-30-84	40.1 38.25 37.1
SH-29	8-21-69 10-11-83 5-15-84	175.16 177.97 177.98	Li-169	1973 10-14-83 5-16-84	^a 7.5 74.93 74.95

a Water level is reported.

Parish and northeastern Livingston Parish. Water levels in St. Helena Parish and northeastern Livingston Parish generally fluctuate a few feet seasonally as a result of varying climatic conditions. In central Livingston Parish, data collected at wells Li-122, -164, and -167 (fig. 1) indicate water-level declines of about 0.2 to 0.4 ft/yr (feet per year) have occurred; declines may be caused by locally increased water withdrawal resulting from irrigation and urbanization along major highways. Large withdrawals in the Ponchatoula and Baton Rouge areas also affect water levels in this area. In southern Livingston Parish, well Li-174 (fig. 1) was measured in August 1976 and again in May 1984; data indicate no decline between measurements.

Aquifer Characteristics

Hydraulic characteristics determined from aquifer tests in adjacent parishes can be used to estimate the general hydraulic properties of equivalent sand beds in the study area. Results of aquifer tests in the "400- and 600-foot" sands of the adjacent Baton Rouge area (Meyer and Turcan, 1955, table 4) indicate that transmissivity ranges from 4,000 to 16,000 ft²/d (feet squared per day) and that hydraulic conductivity ranges from 30 to 110 ft/d (feet per day). Aquifer characteristics should generally be comparable in the lower sand bed of the shallow aquifer unit. Similar aquifer test results at Ponchatoula in Tangipahoa Parish were in general agreement with those in the Baton Rouge area. Aquifer test results obtained from well Ta-284 indicate transmissivity is 27,000 ft²/d and hydraulic conductivity is 180 ft/d (Nyman and Fayard, 1978, p. 22).

Table 4.--Altitude of the upper and lower sand beds in aquifer unit 1 in Livingston and St. Helena Parishes

[In feet, below sea level]

Well or permit number	Altitude of top of sand bed	Altitude of base of sand bed	Well or permit number	Altitude of top of sand bed	Altitude of base of sand bed
	Upper sand	bed		Lower sand	bed
Li-56	^a 835	955	Li-56	1,165	1,327
Li-77	9 99	1,053	Li-77	1,223	1,385
Li-91	832	892	Li-91	1,057	1,197
Li-99	904	1,081	Li-99	1 1 1 ()	1,240
Li-114	1,326	1,401	Li-114	a1,471	1,708
Li-151	877	931	Li-151	1,321	1,405
Li-184	900	1,110	Li-184	1,140	1,415
Li-204	642	715	Li-204	878	959
SH-30	372	470	SH-30	536	588
SH-33	4 0 4	4 99	SH-33	583	604
SH-35	h ¹³⁴	166	SH-35		317
SH-39	b ₄₀₀	617	SH-39	b ₄₀₀	617
SH-40	^b 407	5 75	SH-40	b ₄₀₇	575
4 5026	922	1,117	45026	al, 282	1,377
165286	a ₈₄₁	1,050	165286	a1,133	1,404
166874	752	808	166874	898	932
167768	_54 8	633	167768	753	868
171615	~ 680	1,025	171615	1,079	1,360
			17 44 78	444	484

a b Sand bed contains lenses of clay. Upper and lower beds are merged.

Pleistocene sands equivalent to those in the upper sand bed have been tested at Gonzales in Ascension Parish. Two aquifer tests in the Gonzales-New Orleans aquifer at wells An-18 and -220 (fig. 1), indicate the transmissivity ranges from 31,000 to 32,000 ft²/d, and the hydraulic conductivity is about 120 to 140 ft/d (Long, 1965, table 1). Wells An-18 and -220 were screened in sand intervals about 215 and 270 ft in thickness.

Estimates for hydraulic conductivity and transmissivity of sand intervals can be made using test results for correlative sands in adjacent parishes and data from tables 2, 4, 6, and 8. However, aquifer characteristics can change in a short distance, and values obtained for hydraulic conductivity and transmissivity are estimates or ranges that can be expected. For example, suppose a well is planned in the upper sand bed of the shallow aquifer unit near Port Vincent in Livingston Parish; as shown in figure 1, well Li-100 is located

nearby. Data collected at well Li-100 (table 2) indicate that the upper sand bed is about 130 ft thick in the vicinity. The estimated hydraulic conductivity of this sand bed, 120 to 140 ft/d (Long, 1965, table 1), which was determined by aquifer tests in adjacent areas, can be multiplied by the total sand thickness to determine the approximate transmissivity for the sand bed. In this instance, the expected transmissivity for the upper sand bed would range from 15,600 to $18,200 \, \mathrm{ft^2/d}$.

Water Quality

The shallow aquifer unit of Livingston and St. Helena Parishes can be divided into two distinct areas based on water quality. (See table 11, at back, for representative chemical analyses of water from the shallow aquifer unit.) The first area includes the study area north of Watson (St. Helena Parish and northern Livingston Parish) and is representative of the recharge area for the shallow aquifer unit. Water from the shallow aquifer unit in this area is a mixed ionic type. Major constituents include sodium, calcium, chloride, and bicarbonate.

As indicated by analyses of ground water collected from all wells completed in the shallow aquifer unit in St. Helena Parish and wells Li-169 and -197 in northern Livingston Parish (table 11, fig. 1), the shallow aquifer unit north of Watson contains ground water that has a low concentration of dissolved solids (24 to 55 mg/L). In this area, field pH is generally <6.0 units; measurements range from 5.1 in St. Helena Parish to 6.2 in northern Livingston Parish. Dissolved-iron concentrations are usually low, <50 μ g/L (micrograms per liter); analyses shown in table 11 range from <10 to 50 μ g/L. Wells constructed with steel casing may incur iron problems because water in the shallow aquifer unit north of Watson is usually corrosive. In northern Livingston Parish and throughout St. Helena Parish, dissolved-manganese concentration generally is <30 μ g/L; hardness ranges from about 4 to 14 μ g/L¹; and color generally is <20 platinum-cobalt units.

South of Watson (central and southern Livingston Parish), freshwater obtained from the shallow aquifer unit is predominately a soft sodium-bicarbonate type. The shallow aquifer unit is more mineralized than in the northern half of the study area, and dissolved solids range from about 150 to 200 mg/L, except at well Li-171 where dissolved solids are 90 mg/L. Although the pH of water in the shallow aquifer unit may be <6.0, generally, the field pH ranges between 6.2 and 8.3. Water obtained from the shallow aquifer unit in central and southern Livingston Parish may contain dissolved iron ranging from <10 to 2,100 μ g/L; dissolved manganese usually ranges from <10 to 560 μ g/L. Hardness values between 8 and 63 mg/L can be expected in this area. Color generally is <20 but may exceed this in the upper sand bed.

Hem (1985, p. 159) gives the following classification of hardness: Water having a hardness of 0-60 mg/L is considered soft, 61-120 mg/L is moderately hard, 121-180 mg/L is hard, and greater than (>) 180 mg/L is very hard. In Louisiana, water that is hard or very hard or that contains an iron concentration exceeding 0.3 mg/L generally is treated for public-supply use.

Representative analyses of minor elements and radionuclides in water from selected wells completed in the shallow aquifer unit are shown in table 12 (at back). Minor element and radionuclide concentrations are below recommended limits of the U.S. Environmental Protection Agency (1977) for drinking water.

During this study, water from eight wells (table 13, at back, fig. 1) was analyzed for selected organic chemicals, including insecticides and herbicides; all wells were screened in the upper or lower sand beds of the shallow aquifer unit. Analysis of water from four wells, Li-85, Li-167, SH-47, and SH-52, indicated the presence of insecticides or herbicides (table 13). Chemicals detected in water from well SH-47 were dieldrin, heptachlor, and heptachlor epoxide. Lindane was detected in water from well SH-52, and 2,4-D was detected in water from wells Li-85 and -167. Silvex was also detected in water from well Li-167. Those chemicals, which were detected and for which maximum safe limits for drinking water have been proposed by the U.S. Environmental Protection Agency (1977), occurred in concentrations substantially below the safe limits.

Aquifer Unit 1

Aquifer unit 1 consists of two major areally extensive sand beds, probably of Pliocene age. The upper and lower sand beds in aquifer unit 1 are shown on plate 1, sections A-A' and C-C' and in table 1.

Extent and Thickness

The upper and lower sand beds of aquifer unit 1 are present throughout much of the study area and extend eastward and westward beyond Livingston and St. Helena Parishes. The upper and lower sand beds are correlative with the "1,000- and 1,200-foot" sands of the Baton Rouge area, respectively. East of the study area, in Tangipahoa Parish, aquifer unit 1 sand beds are correlative with the lower Ponchatoula aquifer, and may be hydraulically connected to the Abita aquifer (table 1).

Sand beds in aquifer unit 1 generally dip to the south (pl. 1, section A-A') at about 25 to 55 ft/mi. In northern St. Helena Parish, sand beds of aquifer unit 1 merge into and become part of the shallow aquifer unit (pl. 1, sections A-A' and B-B'). Throughout Livingston Parish and central and southern St. Helena Parish, the upper and lower sand beds are generally separated from the overlying shallow aquifer unit by extensive clays. At well SH-35 in central St. Helena Parish (table 4) sand beds within the unit are between 134 and 317 ft below sea level while at well 171615 in central Livingston Parish (pl. 1, section C-C') the upper and lower sand beds are between 680 and 1,360 ft below sea level. At well 45026, about 7 mi south of Denham Springs (pl. 1, section A-A') the upper and lower sand beds occur between 922 and 1,377 ft below sea level. South of well 45026 sands of aquifer unit 1 contain salty water. Table 4 contains the altitude of the top and bottom of the upper and lower sand beds in aquifer unit 1 at selected well sites throughout Livingston and St. Helena Parishes.

Within aquifer unit 1 the upper and lower sand beds are separated from one another throughout most of the study area by a clay layer (pl. 1, sections

A-A' and C-C'). Interpretations from electrical-log data indicate the upper and lower sand beds although generally separated, locally merge with one another in eastern Livingston Parish and areas of St. Helena Parish. Interpretations of electric logs indicate the upper and lower sand beds merge at well SH-39 near Grangeville (pl. 1, section A-A'). Sand thickness in the upper and lower beds is more than 200 ft at well SH-39. Near Albany at well Li-184 a combined sand thickness of about 500 ft, separated by only 30 ft of clay, is present in the upper and lower beds.

Analyses of correlative sands in adjacent parishes (Morgan, 1961, p. 33-35; Nyman and Fayard, 1978, p. 21-22) and analyses of sand supplied by drillers indicate sand is fine to medium in the upper and lower beds in aquifer unit 1.

Sand thickness in the upper and lower sand beds of aquifer unit 1 vary in all directions but generally increases southward. Thickness of the upper and lower sand beds range from less than 50 ft in northern St. Helena Parish to more than 280 ft in central Livingston Parish. Near Pine Grove in southern St. Helena Parish the upper bed contains about 100 ft of sand. In Livingston Parish, the upper bed is generally present ranging in thickness from about 50 to 100 ft. In central Livingston Parish, near I-12 (table 4, pl. 1, section C-C'), sand thickness contained in the upper bed ranges from about 30 to 210 ft.

The lower sand bed of aquifer unit 1 contains about 50 ft of sand near Pine Grove as determined by an electric log of well SH-30. In Livingston Parish, the lower sand bed usually attains a thickness of about 80 to 150 ft or more. In central Livingston Parish near I-12 (pl. 1, section C-C'), sand thickness in the lower bed ranges between 80 and 280 ft.

Ground-Water Recharge, Movement, and Discharge

Recharge to aquifer unit 1 occurs in northern St. Helena Parish where the upper and lower sand beds are hydraulically connected to the shallow aquifer unit. Recharge enters aquifer unit 1 by downward seepage of water from the shallow aquifer unit. Additional recharge occurs by vertical leakage through intervening clays overlying aquifer unit 1. Ground-water movement from recharge areas in St. Helena Parish is generally in a southerly direction to discharge areas in Livingston Parish and nearby pumping centers in Baton Rouge.

Discharge from aquifer unit 1 occurs in Livingston Parish by upward leakage of water through clays into the overlying shallow aquifer unit and by lateral flow into adjacent sands in the Baton Rouge area. Withdrawals within the study area are small. Generally, water withdrawn from aquifer unit 1 is for domestic use although wells Li-183 and -196 are used for public supply. No withdrawals from aquifer unit 1 have been reported in St. Helena Parish.

Water Levels

Water-level measurements at wells Li-26B, -68, -113, and -142 (fig. 1, table 5) were made in October 1983 as part of this study. Water levels in

Table 5.--Water levels in the lower sand bed in aquifer unit 1 in Livingston Parish

Well number	Date measured	Water level in feet, above or below sea level	Well number	Date measured	Water level in feet, above or below sea level
		Lower	sand bed		
Li-26B Li-68 Li-113	10-14-83 10-20-83 10-18-83	-22.03 -21.05 32.20	Li-142	5-19-69 5-13-74 10-13-83	106.7 97.0 94.0

October 1983 ranged from 22.03 ft below sea level at well Li-26B in western Livingston Parish to 94.0 ft above sea level at well Li-142 in the eastern part of the parish.

Long-term water-level data are available in western Livingston Parish at wells Li-26B and -113 (fig. 4). Well Li-26B is located at Denham Springs about 1 mi east of the Livingston-East Baton Rouge Parish border, and well Li-113 is located at Walker approximately 7 mi east of well Li-26B. Water-level data collected at well Li-26B show declines of about 2.4 ft/yr for the period of record. Water-level changes appear to be small at well Li-113; a general decline of about 0.3 ft/yr are shown by data presented in figure 4. Miscellaneous water-level data collected at well Li-142 at Albany (table 5) indicate water levels in this area have also declined slightly, about 0.3 ft/yr during the last 9 years.

Aquifer Characteristics

Aquifer-test data were not available within the study area for the upper or lower sand beds of aquifer unit 1. Aquifer unit 1 sand beds are not used in St. Helena Parish and only a few wells completed in these beds exist in central Livingston Parish.

Transmissivity and hydraulic conductivity of the upper sand bed can be estimated from data for well Li-196, located near Frost (fig. 1). The transmissivity of the upper sand bed is about $10,000~\rm{ft^2/d}$, estimated from the specific capacity of 19 (gal/min)/ft of drawdown for well Li-196. The hydraulic conductivity is estimated to be about 105 ft/d based on saturated aquifer thickness of 95 ft. In adjacent Tangipahoa Parish, sands correlative with aquifer unit 1 sand beds, the lower Ponchatoula aquifer, have estimated hydraulic conductivities ranging from 35 to 65 ft/d (Nyman and Fayard, 1978, p. 22). Results of aquifer tests in the Baton Rouge area in the correlative equivalent to the lower sand bed indicate the transmissivity ranges from 3,000 to $16,000~\rm{ft^2/d}$, and hydraulic conductivity ranges from 40 to $106~\rm{ft/d}$. Storage coefficients in the Baton Rouge area range from 8.5 X 10^{-5} to $1.6~\rm{X}~10^{-4}$ (Morgan, 1961, p. 36).

Figure 4.--Hydrographs of wells Li-26B and -113, representative of water levels in the lower sand bed of aquifer unit 1.

Water Quality

Representative chemical analyses of water samples obtained from nine wells (fig. 1) screened in aquifer unit 1 in Livingston Parish are shown in table 11. Three of the samples were collected from wells screened in the upper sand bed near Frost, five were collected in the lower sand bed near U.S. Highway 190, and one from well Li-186B at Albany, was collected at a depth where the two major sand beds of this unit are believed to merge. Waterquality data are not available for aquifer unit 1 in St. Helena Parish.

Water from all wells is a sodium-bicarbonate type. Field pH values range from 6.7 to 8.5 units, and dissolved solids range from 150 to 210 mg/L. Concentrations of dissolved iron range from <10 to 900 μ g/L. Iron concentrations vary both areally and with depth, and problems of high iron concentration may locally occur. Dissolved manganese range from <10 to 250 μ g/L. Hardness is \leq 25 mg/L for all analyses. Color is \leq 10 in all samples collected from aquifer unit 1.

Well Li-196 (fig. 1) was sampled for selected minor elements and radionuclides. Results in table 12 indicate none of the analyses exceeded recommended limits of the U.S. Environmental Protection Agency (1977) for public water supply.

Aquifer Unit 2

Three major sand beds, an upper, middle, and lower, define aquifer unit 2 (table 1; pl. 1). The contact of an areally extensive clay layer, at the bottom of the lower sand bed, is used to define the base of aquifer unit 2.

Extent and Thickness

Sand beds of aquifer unit 2 extend throughout St. Helena and Livingston Parishes, into surrounding parishes, and into southwestern Mississippi. The upper, middle, and lower sand beds of aquifer unit 2 are correlative with the "1,500-, 1,700-, and 2,000-foot" sands of the Baton Rouge area, respectively. Eastward in Tangipahoa Parish, aquifer unit 2 sand beds are correlative with sands in the Kentwood aquifer system including the Abita, Covington, and Tchefuncta aquifers (table 1).

Throughout St. Helena Parish and northern Livingston Parish the base of aquifer unit 2 dips southward about 35 to 65 ft/mi. In central Livingston Parish this southward dip increases to about 60 to 80 ft/mi. Freshwater sand beds in aquifer unit 2 range between 260 and 730 ft below sea level in northern St. Helena Parish (pl. 1, section B-B'). Aquifer unit 2 sands are present between about 1,530 and 2,360 ft below sea level in central Livingston Parish, (pl. 1, section C-C'). In southern Livingston Parish, the middle and lower sand beds contain freshwater 2,500 ft below sea level. Data in table 6 shows the altitude of the top and bottom of the upper, middle, and lower sand beds contained in aquifer unit 2 at selected wells.

Analyses of samples collected from the upper sand bed at well Li-184 (fig. 1) indicate that sediments range from medium to fine. In southern St. Helena Parish at Pine Grove, an analysis of the electric log for well SH-30 (fig. 1) indicates that the base of this bed is about 1,100 ft below sea level, and the upper sand bed is more than 300 ft thick. However, sand thickness thins both east and west from this well, as determined from electric logs of wells SH-33 and -40 (table 6 and fig. 1). The upper sand bed in central Livingston Parish near I-12 is present as a discontinuous series of freshwater sand lenses. In this area, this bed ranges in thickness from about 75 to 130 ft, and is between 1,530 and 1,720 ft below sea level (pl. 1, section C-C'). In areas of Livingston Parish south of the Baton Rouge fault (pl. 1, section A-A'), the upper sand bed is discontinuous and contains salty water.

As shown on plate 1, sections A-A' and B-B', the middle sand bed merges with the lower and upper sand beds of aquifer unit 2 in areas of central and northern St. Helena Parish. At Pine Grove, interpretation of the electric-log of well SH-30 (fig. 1) indicate that the middle sand bed is between 1,110 and 1,285 ft below sea level and is about 175 ft thick. The middle bed thins both to the east and west from Pine Grove. In central Livingston Parish, the altitude of the middle sand bed varies from about 1,720 ft below sea level to as much as 2,050 ft below sea level (pl. 1, section C-C'). Sand thickness in this area ranges from 30 to 150 ft (table 6). Near French Settlement, the middle sand bed contains freshwater between 2,645 and 2,705 ft below sea level, as determined from electrical-log data at well Li-88. At the Baton Rouge fault, the middle sand bed is probably adjacent to the lower bed of this unit, possibly because of displacement along the fault unit.

Table 6.--Altitude of the upper, middle, and lower sand beds in aquifer unit 2 in Livingston and St. Helena Parishes

[In feet, below sea level]

Well or permit number	Altitude of top of sand bed	Altitude of base of sand bed	Altitude of top of sand bed	Altitude of base of sand bed	Altitude of top of sand bed	Altitude of base of sand bed
	Upper san	d bed	Middle sa	and bed	Lower :	sand bed
Li-56 Li-77 Li-88	a ^{1,602} a ^{1,581} (b)	1,702 1,823	^a 1,747 1,983 2,645	1,922 2,071 2,705	b ¹ ,990 b ² ,217 (c)	2,355 2,399
Li-91 Li-99 Li-100 Li-114	(c) 1,529 (b) 1,995	1,639	1,724 1,724 2,529	1,832 1,799 2,637	2,004 (c) (c)	2,179
Li-151 Li-184	1,585 1,590	2,245 1,717 1,665	(c) 2,018 (c)	2,051	2,205 a _{1,926}	2,281
Li-204 SH-9 SH-30	d(c) 555 3775	732 1,098	1,476 (d) 1,110	1,514	1,652 (d)	2,234 1,810
SH-32 SH-33	d ₄₈₇ 962	730 981	(d) 1,120	1,285 1,198	1,452 (d) a _{1,244}	1,495 1,474
SH-35 SH-39 SH-40 SH-65 45026 45130 47180	d ₄₃₈ a863 a825 a d601 (b) d(c)	614 1,000 1,054 978	(d) d ₁ ,057 1,154 (d) a ₂ ,137 1,999 (d)	1,287 1,189 2,242 2,036	732 (d) 1,309 1,086 a2,292 a2,199 (d)	794 1,420 1,110 2,557 2,504
54224 90389 165286 166874 167768 171615 174478	d ₃₀₀ (b) (c) a _{1,410} 1,058 (c) 802	705 1,581 1,203 898	(d) 2,380 1,962 a1,610 (c) 1,835 4,914	2,435 2,024 1,775 1,985 1,048	(d) a _{2,480} a _{2,167} a _{1,820} 1,563 2,160 (d)	2,757 2,212 1,999 1,703 2,305

a Sand bed contains lenses of clay.
b Sand bed contains salty water.
c Sand bed is missing on log.
d Sand bed is merged with overlying or underlying beds.

Sediment samples collected from the lower bed at Pine Grove indicate that sediments are mostly medium grained sand with small amounts of fine and coarse. The lower, middle, and upper sand beds of aquifer unit 2 merge into a single sand 200 ft or more thick in western and central St. Helena Parish (pl. 1, section A-A'). However, electrical-log data indicate the lower sand bed is separated from overlying upper and middle sand beds by a clay layer throughout eastern St. Helena Parish. The lower bed thins at Pine Grove and then increases in thickness eastward and westward. As determined from electrical-log data from wells SH-30, -33, and -40 (table 6, fig. 1), sand thickness ranges between about 40 and 210 ft and is found between 1,240 and 1,500 ft below sea level. In central Livingston Parish near I-12 (pl. 1, section C-C'), the lower bed is present between 1,926 and 2,234 ft below sea level, and sand thickness ranges from 45 to 365 ft. Near the Baton Rouge fault, at well 90389, the base of the lower sand bed is about 2,757 ft below sea level, and sand thickness is about 260 ft.

Ground-Water Recharge, Movement, and Discharge

Aquifer unit 2 is recharged by water from the shallow aquifer unit in southern Amite County, Mississippi, where sands in aquifer unit 2 merge into the shallow aquifer unit. In areas where these units merge, ground water flows vertically from the shallow aquifer unit into underlying sands of aquifer unit 2. Additional recharge occurs throughout St. Helena Parish by vertical leakage of water from the shallow aquifer unit and aquifer unit 1 through confining clays overlying aquifer unit 2.

Ground-water movement throughout St. Helena Parish and most of Livingston Parish is generally in a southwesterly direction toward pumping centers in Baton Rouge. Figure 5 is a potentiometric map of aquifer unit 2 constructed from water-level data collected during October 1983.

Ground-water discharge from aquifer unit 2 occurs chiefly by withdrawals from correlative sands in the Baton Rouge area, withdrawals in central Livingston Parish, and by vertical leakage into the underlying aquifer unit 3. Well-inventory data collected in Livingston Parish show that about 15 wells currently withdraw ground water from unit 2 for public supply. About one half of these public-supply wells are completed in the middle sand bed. Reported well yields generally range from 150 to 750 gal/min for these 15 wells. The largest reported discharge for an aquifer unit 2 well was 1,900 gal/min free flow from well Li-149 in 1970. This well is screened in the middle sand bed and was reported to yield 2,600 gal/min when pumped with a large capacity turbine pump. Water is not withdrawn from wells in aquifer unit 2 in St. Helena Parish.

Water Levels

Water levels in Livingston Parish ranged from about 18 ft below sea level at well Li-77 near Denham Springs, to about 109 ft above sea level at well Li-131 north of Albany (fig. 5). Well Li-77 is screened in the lower sand bed, and well Li-131 is screened in the middle sand bed. Well Li-100, located south of the Baton Rouge fault at Port Vincent, had a water level about 65 ft

Figure 5.--Potenticmetric surface of aquifer unit 2, October 1983.

above sea level. This well is believed to be screened in the middle sand bed. In northern St. Helena Parish, water levels probably reach 150 ft or more above sea level near Greensburg.

Water-level declines have varied during intervals as a result of changes in rates of ground-water withdrawal in the Baton Rouge area. At well Li-43 water levels declined an average of about 6.2 ft/yr, 1957-73. Declines during the years 1958-64 averaged about 5.0 ft/yr, but during the interval 1965-70, water-level declines nearly doubled and averaged about 9.7 ft/yr. Water-level data collected at nearby well Li-92, which is screened in the same bed and is located about 1 mi northeast of well Li-43, indicate water-level declines averaged about 0.4 ft/yr, 1975-84.

At well Li-54 water levels have been measured since 1954. Average water-level declines were about 2.3 ft/yr, 1954-77. However, during the interval 1967-70 yearly declines nearly doubled this average as a result of increased ground-water withdrawal in the Baton Rouge area. Water-level data collected 1978-84 at well Li-54 indicate average declines were only about 0.3 ft/yr. Water-level data presented for well Li-52, located 4 mi northwest of well Li-54, show similar water-level trends to those for well Li-54. Water-level data indicate an average water-level decline of about 2.3 ft/yr, 1951-78. Since 1979 water-level trends have been erratic at well Li-52.

Aquifer Characteristics

Aquifer-test data collected from aquifer unit 2 are available at only one site in the study area. Well Li-43 is screened in the lower sand bed which is about 175 ft thick. This well was pumped at a rate of 625 gal/min for 4-1/2 hours. The observed specific capacity was about 8.5 (gal/min)/ft of drawdown. Aquifer test results of well Li-43 indicate the lower sand bed has a transmissivity of about 18,000 ft²/d and an average hydraulic conductivity of about 100 ft/d. Results of aquifer tests in the correlative sand in the Baton Rouge area are summarized in table 7.

Although aquifer-test data are not available in the study area to describe the hydraulic characteristics of the upper and middle sand beds of aquifer unit 2, estimates can be made from data available in adjacent parishes. Aquifer test results for the Baton Rouge area (Morgan, 1961, p. 39-45) should closely resemble hydraulic characteristics of correlative sand beds in aquifer unit 2. These are summarized in table 7.

Water Quality

Chemical analyses of ground water obtained from aquifer unit 2 in Livingston and St. Helena Parishes (fig. 1) are shown in table 11. Ground water from aquifer unit 2 is a soft sodium-bicarbonate type. Hardness is ≤32 mg/L. Color is <20 units except at well Li-131 which has a color of 70 units. In St. Helena Parish, limited chemical data are available. However, chemical data collected during test drilling prior to this study from wells SH-33B and -34A indicate that sand beds of unit 2 in St. Helena Parish contain

Figure 6.--Hydrographs of wells Li-43, -52, -54, and -92, representative of water levels in the middle and lower sand beds of aquifer unit 2.

Table 7.--Hydraulic characteristics of correlative sand beds in aquifer unit 2 as determined by aquifer tests in the Baton Rouge area

Aquifer unit 2 sand beds in Livingston and St. Helena Parishes	Correlative aquifer in the Baton Rouge area	Transmissivity (feet squared per day)	Hydraulic conductivity (feet per day)
Upper	"1,500-foot" sand	10,000-12,000	123-155
Middle	"1,700-foot" sand	4,300	32
Lower	"2,000-foot" sand	21,000-32,000	150-200

slightly acidic water with field pH values ranging from about 6.2 to 6.3 units. Ground-water samples collected at wells SH-33B and -34A have dissolved-solids concentrations of 140 mg/L and dissolved-iron concentrations range from 740 to 1,000 μ g/L; dissolved manganese range from 220 to 240 μ g/L.

In Livingston Parish, the field pH of water from aquifer unit 2 generally ranges from 7.1 to 8.9. Concentrations of dissolved solids range from 160 to 230 mg/L in Livingston Parish. Dissolved-iron concentrations are generally $\leq 400~\mu \rm g/L$ but locally exceed 1,000 $\mu \rm g/L$ at wells Li-131 and -159. Manganese generally is $\leq 300~\mu \rm g/L$.

Results of four analyses for selected minor elements and three analyses for radionuclides collected in Livingston Parish (fig. 1) from the middle and lower sand beds of aquifer unit 2 are shown in table 12. Results indicate recommended limits for public water-supply sources, as set by the U.S. Environmental Protection Agency (1977), were not exceeded for any constituent.

Aquifer Unit 3

The deepest freshwater sands in St. Helena Parish and in the northern half of Livingston Parish occur within aquifer unit 3. In central and northern Livingston Parish and throughout St. Helena Parish two major freshwater sand beds, an upper and lower, define this unit (pl. 1). The occurrence of freshwater below the upper and lower sand beds of aquifer unit 3 is limited to deeper sands in northern St. Helena Parish. Because groundwater is not withdrawn from these deeper sands and they are not extensive throughout the study area, these sands are not discussed in detail.

Extent and Thickness

The upper and lower sand beds of aquifer unit 3 extend east, west, and north of the study area. The upper and lower sand beds of aquifer unit 3 are correlative with the "2,400- and 2,800-foot" sands of the Baton Rouge area,

respectively. To the west, the upper and lower sand beds are correlative with sands contained in the Hammond, Amite, and Ramsay aquifers in Tangipahoa Parish.

The upper sand bed of aquifer unit 3 contains freshwater throughout areas north of the Baton Rouge fault. The upper bed dips in a southerly direction between 40 and 60 ft/mi in St. Helena Parish. In Livingston Parish, this dip increases to about 60 to 80 ft/mi. North of Pine Grove, the upper bed is composed of a series of sand lenses and correlation is difficult. As shown on plate 1, section B-B', the upper bed is composed of sand lenses which range between 15 and 150 ft in thickness in northern St. Helena Parish and occur between 800 to 1,100 ft below sea level. Sand thickness generally increases southward. In southern St. Helena Parish, as interpreted from electrical-log data collected at wells SH-30, -33, and -40 (table 8), the upper sand bed is divided into two units by a clay layer 200 ft or more in thickness. Sand in this bed is between 65 and 170 ft in total thickness and occurs between 1,500 and 2,000 ft below sea level. In central Livingston Parish near I-12 (pl. 1, section C-C'), the upper sand bed generally is present about 2,300 to 2,650 ft below sea level. In this area, thickness of the upper sand bed ranges from about 90 to 300 ft or more although clay lenses may be present within the sand. Near the Baton Rouge fault in western Livingston Parish, interpretations of electrical-log data collected at well 45026 indicate that the base of this bed is about 2,900 ft below sea level and sand thickness is about 125 ft.

The last extensive freshwater sand bed extending from St. Helena Parish into central Livingston Parish is the lower bed of aquifer unit 3. This bed dips southward (pl. 1, section A-A') between 40 and 80 ft/mi throughout the study area. In St. Helena Parish near Grangeville, about 100 ft of sand is present between 2,150 and 2,250 ft below sea level. Similar to the upper sand bed the lower bed is lenticular in northern St. Helena Parish. The lower bed contains sand lenses from less than 25 ft to more than 100 ft in thickness at about 1,400 to 2,000 ft below sea level (pl. 1, section B-B'). In central Livingston Parish, the lower sand bed is between 2,650 ft and 3,050 ft below sea level (pl. 1, section C-C'). Sand in this bed attains a maximum thickness of nearly 300 ft but generally is less. Southward near Springville, the lower sand bed contains brackish water near the base. South of the Baton Rouge fault, the lower sand bed contains salty water.

Ground-Water Recharge, Movement, and Discharge

Recharge to aquifer unit 3 occurs from downward movement of water from the shallow aquifer unit in the outcrop area and from vertical leakage from the overlying aquifer unit 2. Aquifer unit 3 extends into southern Mississippi where the upper and lower sand beds are near land surface and are directly connected with the overlying shallow aquifer unit in Amite, Franklin, and Lincoln Counties. In areas where aquifer unit 3 is in hydraulic connection with the shallow aquifer unit, recharge water moves from the shallow aquifer unit into the upper and lower sand beds of aquifer unit 3. This recharge is transmitted downdip into St. Helena and Livingston Parishes. Additional recharge from vertical leakage from aquifer unit 2 occurs throughout St. Helena Parish and northern Livingston Parish. As shown in figures 5 and 7, the overlying aquifer unit 2 contains higher hydrostatic heads throughout St. Helena Parish and in northern Livingston Parish than the underlying aquifer unit 3. In these areas, ground-water leaks through intervening clays into the underlying aquifer unit 3.

Table 8. --Altitude of the upper and lower sand beds in aquifer unit 3 in Livingston and St. Helena Parishes

[In feet, below sea level]

Well or permit number	Altitude of top of sand bed	Altitude of base of sand bed	Well or permit number	Altitude of top of sand bed	Altitude of base of sand bed
	Upper sand be	xd		Lower sand be	ed.
Li-56 Li-91 Li-151 Li-184 Li-204 SH-9	a2,430 b2,297 b2,310 b2,387 b2,044 990	2,526 2,634 2,649 2,498 2,293 1,140	Li- 91 Li-184 Li-204 SH-9 SH-32 SH-35	a2,990 2,751 b2,491 b1,425 b1,780 (c)	3,044 2,902 2,519 1,975 1,908
SH-30 SH-32 SH-33 SH-35 SH-39 SH-40	b _{1,683} b _{1,595} a _{1,303} a _{1,670} b _{1,499}	2,005 1,045 2,017 1,397 1,789 1,864	SH-65 26360 37171 44945 45026 45130	a1,744 a1,195 b1,516 2,784 (d) 2,976	1,997 1,510 1,866 2,915
26360 37171 44945 45026 45130 54224	895 906 b _{2,} 409 2,760 2,569 920	1,005 921 2,684 2,890 2,824 960	54224 165286 167768 171685 174478	b2,681 b2,583 b2,667 b2,159	1,815 3,010 2,885 2,907 2,529
90389 166874 167768 171685 174478	b2,965 b2,146 b1,863 a2,405 b1,529	3,025 2,413 2,103 2,515 1,752			

Ground-water movement in aquifer unit 3 generally is in a southwesterly direction toward pumping centers in Baton Rouge. Figure 7 is a potentiometric map constructed from water-level data collected in October 1983 from wells screened in the upper sand bed.

a Bottom of log interval.
b Sand bed contains lenses of clay.

Sand bed is missing on log. d Sand bed contains salty water.

Figure 7.--Potentiometric surface of the upper sand bed of aquifer unit 3, October 1983.

Major discharge from aquifer unit 3 occurs as lateral ground-water flow into correlative sands in the Baton Rouge area; however, small withdrawals from the upper and lower sand beds occur locally in St. Helena Parish and central Livingston Parish. Well-inventory data indicate 12 wells screened within aquifer unit 3 presently withdraw water in St. Helena Parish (table 10). Ten of these wells are constructed in the upper sand bed of this unit, and two are screened in the lower sand bed (table 10). Ground-water withdrawal from these beds is predominately for public supply. Available data indicate that water is withdrawn from about 10 wells in aquifer unit 3 sand beds in Livingston Parish. Additional wells screened in aquifer unit 3 probably exist, but no information has been obtained. Most wells in Livingston Parish are used for public supply and are located in northwestern parts of this parish (Denham Springs, Watson, and surrounding communities).

The largest reported discharge from a well completed in aquifer unit 3 was about 1,300 gal/min for well Li-162. Located in the Denham Springs area, this well is screened in the upper sand bed and is used for public supply. Well SH-8 also screened in the upper bed near Montpelier had a reported discharge of 1,200 gal/min. Most reported yields were about 800 gal/min or less for wells screened in the upper bed of this aquifer unit 3.

Water Levels

Selected water-level data collected as part of this study from wells screened in aquifer unit 3 are shown in table 9. Limited data were available for only a few wells completed in aquifer unit 3 in northwestern Livingston Parish. Water-level data are not available in most areas throughout this parish as wells are not generally completed to these depths. In St. Helena Parish, most wells completed in the upper sand bed are found in the southern half of the parish. Water-level data collected from wells screened in the upper and lower beds of this aquifer unit ranged from about 10 ft below to 95 ft above sea level in St. Helena and Livingston Parishes (table 9, fig. 7). The lowest water levels were measured in the Denham Springs area from wells screened in the upper sand bed. Well SH-65 near Hillsdale had the highest measured water level, 95 ft (table 9) above sea level in 1984. Water levels in the lower sand bed ranged from about 30 ft above sea level near Watson to about 80 ft above sea level near Darlington.

Table 9.--Water levels in the upper and lower sand beds in aquifer unit 3 in Livingston and St. Helena Parishes

Well number	Date measured	Water level in feet, above or below sea level	Well number	Date measured	Water level in feet, above or below sea level
	Upper sand	bed		Lower sand	bed
Li-185 SH-5 SH-40 SH-65	11- 3-83 5-17-84 5- 9-84 5- 9-84	-9.42 93.08 91.96 95.32	Li-74 Li-91 SH-9 SH-66	10-24-83 11- 3-83 10- 6-83 10-19-83	33.0 53.0 82.78 81.26

Figure 7 is a potentiometric map constructed with water-level data collected from the upper sand bed of aquifer unit 3 in October 1983. Throughout most of St. Helena Parish water levels were about 90 ft above sea level. In southwestern St. Helena Parish, however, the potentiometric surface of this sand has been reduced by 30 to 40 ft when compared to other areas of this parish. In southwestern St. Helena Parish and in northwestern Livingston Parish, near Denham Springs and Watson, water levels in this bed are significantly lower because of withdrawals in the Baton Rouge area.

Declines in water levels have occurred in the upper and lower sand beds of aquifer unit 3. Water-level data collected at well SH-7 (figs. 1 and 8) indicate average water-level declines of about 2.5 ft/yr have occurred in the upper sand bed since 1955. The decline in this bed is a result of a regional water-level decline caused by withdrawals in nearby parishes including Tangipahoa and East Baton Rouge.

Declines in well SH-9 (figs. 1 and 8) have averaged about 1.2 ft/yr, 1960-84. Although this well is screened in the lower sand bed which is not heavily pumped in the study area, declining water levels are a result of withdrawals from correlative sands in East Baton Rouge Parish.

Figure 8.--Hydrographs of wells SH-7 and -9, representative of water levels in the upper and lower sand beds of aquifer unit 3.

Aquifer Characteristics

Estimations for the transmissivity and hydraulic conductivity in the upper sand bed were made from specific-capacity data collected at well Li-181. Transmissivity for the 116 ft thick sand interval was estimated to be about 11,000 ft 2 /d. The hydraulic conductivity at this site was estimated to be 95 ft/d. Transmissivity and hydraulic conductivity values obtained at well Li-181 are in general agreement with values determined in the "2,400-fcot" sand in the Baton Rouge area. An aquifer test in the Baton Rouge area indicates that the transmissivity and hydraulic conductivity of the "2,400-fcot" sand are 13,000 ft 2 /d and 80 ft/d, respectively (Morgan, 1961, p. 50). Data were not available within the study area to determine aquifer characteristics of the lower sand bed.

Water Quality

Selected chemical analyses of water samples obtained from wells constructed in aquifer unit 3 throughout the study area (fig. 1) are shown in table 11. Twenty-four of these samples were collected from wells screened in the upper sand bed, five from wells screened in the lower bed.

Freshwater obtained from the upper and lower sand beds in aquifer unit 3 is a sodium-bicarbonate type. Dissolved solids generally range from 180 to 300 mg/L, except wells Li-91 and SH-33a have dissolved-solids concentrations of 580 and 930 mg/L, respectively (table 11). Compared to all other analyses well Li-91 contains a higher chloride concentration, 57 mg/L. The field pH of water from wells screened in aquifer unit 3 ranges from 7.2 to 9.4. Hardness is <20 mg/L for analyses shown in table 5. Dissolved-iron concentration generally is <250 μ g/L; however, concentrations exceeding 900 μ g/L have been observed. Dissolved-manganese concentration is present in amounts typically <100 μ g/L and has not exceeded 350 μ g/L. Color generally is <30 units.

Results of ground water sampled as part of this study for selected minor elements and radionuclides from aquifer unit 3 are shown in table 12. None of the minor element or radionuclide analyses exceeded recommended limits of the U.S. Environmental Protection Agency (1977) for drinking water. Samples collected at six sites were analyzed for selected minor elements. Ground-water samples collected at five sites were analyzed for selected radionuclides.

Base of Freshwater

The chloride concentration, <250 mg/L, used to define the base of freshwater was based on interpretations of electric logs and analysis of chemical data. A map constructed from these data defining the base of fresh ground water is shown in figure 9. In northern St. Helena Parish, freshwater is present to altitudes of 2,500 ft below sea level while in extreme southern Livingston Parish, freshwater is present to altitudes of only 500 ft below sea level. The base of freshwater generally occurs within Miocene formations and may be 3,200 ft or more below sea level in southeastern Livingston Parish.

Figure 9.--Altitude of base of fresh ground water.

Throughout St. Helena Parish, freshwater generally extends to 2,300 to 2,700 ft below sea level. However, in the extreme northeastern part of the parish, freshwater occurs from a minimum of about 2,100 ft below sea level to a maximum of 2,575 ft below sea level near the city of Greensburg. In northeastern Livingston Parish sands containing freshwater extend to 2,400 ft below sea level; depths to the base of freshwater increase both to the west and to the south. Near the towns of Denham Springs and Killian, freshwater occurs to more than 3,100 ft below sea level.

In southern Livingston Parish, sands in intermediate aquifer units may contain salty water. As shown in figure 9 and on plate 1, the Baton Rouge fault may act as a barrier restricting southward flushing of salty water from beds of sands of aquifer unit 1, the upper sand of aquifer unit 2, and all beds in aquifer unit 3. The Baton Rouge fault is a freshwater-saltwater boundary through southern Livingston Parish. Aquifer units containing salty water in intermediate-depth sand beds include aquifer units 1 and 2 (fig. 9). Although limited electrical-log data for southern Livingston Parish are available, an electric log about 2 mi west of Frost indicates all sand beds encountered to about 1,110 ft below sea level contain freshwater. At well Li-86, about 8 mi south of Frost, sands about 700 ft below sea level contain salty water, and major freshwater sands are not encountered again until about 2,860 ft below sea level.

SUMMARY AND CONCLUSIONS

A regionally extensive aquifer system, the Southern Hills aquifer system, is the principal source of drinking water for Livingston and St. Helena Parishes in southeastern Louisiana. The system is composed of interlayered sand beds, chiefly deltaic, ranging in age from Miocene to Holocene. In Livingston and St. Helena Parishes, four aquifer units containing nine areally extensive sand beds have been delineated within this system. Hydraulic head, geophysical, and water-quality data were used to group sand beds in the aquifer units, which are the shallow unit, and units 1, 2, and 3. Freshwater within the aquifer system extends to 2,500 ft below sea level in northern St. Helena Parish and to 3,200 ft below sea level in southeastern Livingston Parish. In extreme southern Livingston Parish, freshwater is present to altitudes of only 500 ft below sea level. The Baton Rouge fault may act as a barrier restricting southward flushing of salty water from sand beds of aquifer unit 1, the upper bed of aquifer unit 2, and all beds in aquifer unit 3.

Recharge from rainfall to the aquifer system occurs throughout most of St. Helena Parish and southwestern counties of Mississippi. Rainfall is received directly by the shallow aquifer unit and is transmitted to underlying aquifer units 1, 2, and 3 as they successively merge into or near the shallow aquifer unit in northern St. Helena Parish and in the southwestern Mississippi counties of Amite, Franklin, and Lincoln. Ground-water movement in the shallow aquifer unit is generally in a southerly direction from recharge areas. Discharge from the shallow aquifer unit occurs as pumpage or ground-water leakage in southern Livingston Parish. In aquifer units 1, 2, and 3, ground-water movement is in a southwesterly direction toward large pumpage centers in the Baton Rouge area.

Ground-water withdrawals totaled about 7 Mgal/d in Livingston and St. Helena Parishes in 1985. Wells completed in the shallow aquifer unit and aquifer unit 1 sand beds, are primarily low yielding and most withdrawals are for domestic use. Sands in aquifer units 2 and 3 supply ground water for public-supply, domestic, and industrial use. Large ground-water withdrawals in East Baton Rouge Parish, about 120 Mgal/d in 1985, caused significant water-level declines in sand beds in aquifer units 1, 2, and 3. Intensively pumped sand beds had water-level declines averaging more than 5 ft/yr in parts of Livingston Parish near Baton Rouge. Declines since 1980 are generally less than 0.5 ft/yr in most sand beds. Water-level declines between 1 to 2.5 ft/yr, however, continue in aquifer unit 3 sand beds in St. Helena Parish. The hydraulic conductivity of sands within aquifer units ranges from 30 to 200 ft/d. Transmissivity ranges between 3,000 and 32,000 ft²/d.

Most fresh ground water throughout the study area is a soft sodium-bicar-bonate type. However, sand beds of the shallow aquifer unit in St. Helena Parish and northern Livingston Parish contain a mixed ionic type water with a low concentration of dissolved solids. Chemical analyses of ground water for selected minor elements, insecticides, herbicides, and radionuclides showed that none of these constituents exceed primary or secondary drinking water standards of the U.S. Environmental Protection Agency. However, all aquifer units may locally contain water with concentrations of naturally occurring chemicals such as dissolved iron or dissolved manganese, which may limit the use of water without treatment.

SELECTED REFERENCES

- Buono, Anthony, 1983, The Southern Hills regional aquifer system of southeastern Louisiana and southwestern Mississippi: U.S. Geological Survey Water-Resources Investigations Report 83-4189, 38 p.
- Callahan, J.A., 1983, Estimated water use in Mississippi, 1980: U.S. Geological Survey Open-File Report 83-224, 1 sheet.
- Case, H.L., III, 1979, Ground-water resources of Washington Parish, Louisiana: Louisiana Department of Transportation and Development, Office of Public Works Water Resources Technical Report No. 18, 33 p.
- Dial, D.C., and Kilburn, Chabot, 1980, Ground-water resources of the Gramercy area, Louisiana: Louisiana Department of Transportation and Development, Office of Public Works Technical Report 24, 39 p.
- Fisk, H.N., 1944 [1945], Geological investigation of the alluvial valley of the lower Mississippi River: Vicksburg, Mississippi, U.S. Army Corps of Engineers, Waterways Experiment Station, 78 p.
- Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water (3rd ed.): U.S. Geological Survey Water-Supply Paper 2254, 263 p.
- Howe, H.J., 1962, Subsurface geology of St. Helena, Tangipahoa, Washington, and St. Tammany Parishes, Louisiana: Gulf Coast Association of Geological Societies Transactions, v. 12, p. 121-155.

- Huntzinger, T.L., Whiteman, C.D., Jr., and Knochenmus, D.D., 1985, Simulation of ground-water movement in the "1,500- and 1,700-foot" aquifer of the Baton Rouge area, Louisiana: Louisiana Department of Transportation and Development, Office of Public Works Water Resources Technical Report No. 34, 52 p.
- Long, R.A., 1965, Ground water in the Geismar-Gonzales area, Ascension Parish, Louisiana: Louisiana Department of Conservation and Louisiana Department of Public Works Water Resources Bulletin 7, 67 p.
- Meyer, R.R., and Turcan, A.N., Jr., 1955, Geology and ground-water resources of the Baton Rouge area, Louisiana: U.S. Geological Survey Water-Supply Paper 1296, 138 p.
- Morgan, C.O., 1961, Ground-water conditions in the Baton Rouge area, 1954-59, with special reference to increased pumpage: Louisiana Department of Conservation and Louisiana Department of Public Works Water Resources Bulletin 2, 78 p.
- ---- 1963, Ground-water resources of East Feliciana and West Feliciana Parishes, Louisiana: Louisiana Department of Public Works, 58 p.
- National Oceanic and Atmospheric Administration, 1982, Climatological data, annual summary, Louisiana 1982: U.S. Department of Commerce, NOAA, v. 87, no. 13, 25 p.
- Newcome, Roy, Jr., and Thomson, F.H., 1970, Water for industrial development in Amite, Franklin, Lincoln, Pike, and Wilkinson Counties, Mississippi: Research and Development Center Bulletin, 61 p.
- Nyman, D.J., and Fayard, L.D., 1978, Ground-water resources of Tangipahoa and St. Tammany Parishes, southeastern Louisiana: Louisiana Department of Transportation and Development, Office of Public Works Water Resources Technical Report 15, 76 p.
- Parsons, B.E., 1967, Geological factors influencing recharge to the Baton Rouge ground-water system, with emphasis on the Citronelle Formation: Louisiana State University, Master's Thesis.
- Rollo, J.R., 1969, Salt-water encroachment in aquifers of the Baton Rouge area, Louisiana: Louisiana Department of Conservation and Louisiana Department of Public Works Water Resources Bulletin 13, 45 p.
- Urban System Associates, Inc., 1982, Water requirements and availability for Louisiana 1980-2020: 236 p.
- U.S. Environmental Protection Agency, 1975, National interim primary drinking water regulations: Federal Register, v. 40, no. 248, Wednesday, Dec. 24, 1975, part IV, p. 59566-59587.
- ---- 1977 [1978], Water criteria for water, 1976: U.S. Environmental Protection Agency, Washington, D.C., 256 p.
- Winner, M.D., Jr., 1963, The Florida Parishes—an area of large, undeveloped ground-water potential in southeastern Louisiana: Louisiana Department of Public Works, 50 p.

BASIC DATA

TABLES 10 - 13

TABLE 10. -- RECORDS OF SFLECTED WATER WELLS IN LIVINGSTON AND ST. HELENA PARISHES

(AQUIFER UNIT: S, SHALLOW. SAND BED: U, UPPER; M, MIDDLE; L, LOWER. USE OF SITE: Z, DESTROYED; W, WITHDRAWAL; U, UNUSED; T, TEST;
O, OBSERVATION. USE OF WATER: U, UNUSED; H, DOMESTIC; P, PUBLIC SUPPLY: N, INDUSTRIAL; T, INSTITUTIONAL: C, COMMERCIAL; S, STOCK;
D, DAIRY; ALTITUDE IS REFERENCED TO SEA LEVEL]

LI-16 S 26 T 65 R 4E S L 1938	LOCAL WELL NUMBER	LOCATION SEC. T. R.	AQUIFER UNIT	SAND	YEAR	ALTITUDE OF LAND SURFACE (FEET)	CASING DIAM- ETER (INCHES)	DEPTH OF WELL (FEET)	DEPTH TO FIRST OPENING (FEET)	DISCHARGE (GALLONS PER MINUTE)	DATE DISCHARGE MEASURED	USE OF SITE	USE OF WATER
S 5 6 7 6 5 R 5 E 2 M 1939 35 4 1720 1700 350 1939 W 8 5 6 7 7 5 R 12E 2 1 1938 46 2 266 246 2 26 246 2						LIVII	GSTON PARIS	=			7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
S 30 T 68 R 12	1.1~16	34 Tr 6c Tr	ſ	;	•	ļ							
8 30 7 6 S R 4 E 2 0 1938 47 2.5 1305 1240	LI-23	30 T 6S R	v v	≅ -	1939	35	₹ (1720	1700	350	1939	<u> 32</u>	Ħ
S S S S S S S S S S	LI-24	30 T 65 P	٦ () :	1930	÷ -	7 +	997	246	;	;	3	æ
S 45 T 6S R 3E	11-260	20 4 50	٠ ب	n	1938	24	2.5	1322	1.283	1	į	3	=
8 45 6 2160 2072 625 1957 1 8 8.45 T 68 R 3E 2 L 1949 6 3 2828 2440 200 1949 W 8 8.45 T 68 R 6E 2 M 1949 46 3 1865 1825 300 1949 W 8 2.5 T 68 R 6E 2 M 1954 33 2.5 2144 2104	11 13	1 /S K	-	L)	1937	37	2	1305	1289	į	;	0	=
8 \$ 45 T 68 R 3E 3 U 1949 50 4 2528 2440 200 1949 W 5 20 T 68 R 6E 2 M 1949 46 3 1865 1825 300 W 5 2 T 75 R 6E 2 M 1954 33 2.5 2144 2104 M 5 2 T 75 R 6E 2 L 1954 35 4 2612 2572 M 5 8 T 75 R 6E 2 L 1955 39 4 2612 2572 M 5 8 T 75 R 6E 2 L 1955 46 4 1990 1960 </td <td>1,1 "4,5</td> <td>44 T 6S R</td> <td>7</td> <td>J</td> <td>1948</td> <td>4.5</td> <td>9</td> <td>2160</td> <td>2072</td> <td>625</td> <td>1957</td> <td>n</td> <td>'n</td>	1,1 "4,5	44 T 6S R	7	J	1948	4.5	9	2160	2072	625	1957	n	'n
S 20 T 6S R 6E 2 M 1949	LI-46B	45 T 6S B	۳	I	10/0	C	4	000	-		,		
S 45 7 68 H 58 2 M 1944 4h 3 1865 1825 300 M S 2 7 78 R 6E 2 L 1954 35 3 2.5 2144 2104 2 S 68 7 75 R 6E 2 L 1954 35 3 4 2612 2572 W S 68 7 75 R 6E 2 L 1955 39 4 2612 2572 W S 60 7 75 R 6E 2 M 1956 46 1900 1840 608 1956 W S 60 7 6 R 6E 2 M 1956 46 6 1900 1840 W S 60 7 75 R 6E 2 L 1956 46 1913 1892 1967 W S 60 7 7 7 8 R 7 2 2 2 2 1966 1967 W S 17 7 78 R 9 2 2 2 2 4	LI-52	20 T 65 B) (> 2	1949	2 .	÷ 1	6262	0447	200	6461	3	<u>-</u>
\$ 2 17 0 S R 3E \$ 1 1954 \$ 16 \$ 1714 \$ 1674 \$ 1 1954	17 11	1 CO 1 CO 1	7 (Σ	1949	9.5	~	1865	1825	300	1	3	×
S 5 T 75 R 6E 2 L 1954 33 2.5 2144 2104	1.1.7.7.3.3.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	45 T 55 K	7	Σ	1953	91/	77	1714	1674	:	1	2	: a
S 39 T 68 R 6F 2 L 1954 35 3 2030 1990 W S 68 T 78 R 2E 3 u 1955 39 h 2612 2572 w S 67 T 68 R 3E 2 M 1947 h h 4 1913 1853 350 1947 W S 40 T 68 R 6E 2 M 1947 h h 1956 1968 1956 W S 43 T 78 R 6E 2 L 1956 35 2 2196 2156 1967 W S 51 T 78 R 6E 2 L 1947 30 6 1926 150 1977 W S 51 T 78 R 5E 1 L 1959 50 7 2693 2633 2633 2633 2633 2633 2633 2633 2633 2633 2633 2644 2764 W 1958 W 1958 W 1958 W 1958 <	L1-54	2 T 7S R	2	ı	1954	33		2144	2104	ŧ	;	3 3	: =
S 68 T 7S R 2E 3 U 1955 39 V 2612 2572	L1-55	39 T 6S R	2	7	1954	35	~	2030	1990	!) t	≥ 33	= =
S 25 T 6S R 3E	LI-56	68 T 7S R	m	Þ	1955	ő	4	, 2612	2573				
S 40 T 6S R 6E 2 M 1970 100 1000 1956 W 1956 S 13 T 7S R 6E 2 L 1967 35 S 1977 100 1000 1967 W 1970 1000 1967 W 1970 1967 N 1970 1000 1967 N 1	LI-57	25 T 6S R	2	*	1956	\ <u>\</u>	. ,	1000	2)(2	1 (1	' ≋	۵.
S 51 T 7S R 6E 2 L 1956	L1-58	40 T 6S B	۱ ۸	: >	101.7	0 7	٥ -	1900	1040	209	1956	3	C.
S 10 T 6S R 5E	LI-59	51 T 7S B	۱ ،	E -	1941	0	2 (1913	1853	350	1947	3	C.
S 30 T 6S R 5E 2 L 1958	1.158	2 2 4 67	V +	۱.	9261	35	~	2196	2156	! 1	1	3	<u>:::</u>
S 30 T 6S R 5E 2 L 1958 40 6 1925 1802 725 1958 W S 61 T 6S R 2E 3 L 1959 50 7 2693 2633 W S 17 T 7S R 3E 2 L 1955 71 3 2.5 2444 2404 W S 29 T 5S R 3E 2 L 1956 71 3 1628 1608 0 S 49 T 5S R 3E 2 M 1955 66 3 1454 U S 49 T 5S R 3E 2 M 1955 56 2.5 1454 U S 64 T 6S R 4E 2 M 1955 56 2.5 1455 1565 W S 16 T 9S R 5E 2 L 1965 19 4 29 50 1962 W S 40 T 9S R 4E 2 <td>) }</td> <td>\$ 0 T Ct</td> <td></td> <td>-3</td> <td>1947</td> <td>30</td> <td>9</td> <td>1508</td> <td>1</td> <td>10</td> <td>ţ</td> <td>3</td> <td>: cc</td>) }	\$ 0 T Ct		-3	1947	30	9	1508	1	10	ţ	3	: cc
S 61 T 6S R 2E 3 L 1959 50 7 2693 2633 1950 W 5 17 T 7S R 3E 2 L 1953 37 2.5 2444 .2404 1950 S 17 T 7S R 3E 2 L 1956 71 3 1628 1608 10 S 29 T 5S R 3E 2 M 1955 66 3 1492 1454 10 S 64 T 6S R 2E 2 M 1955 56 2.5 1650 1610 2 S 22 T 6S R 4E 2 L 1961 44 3 1962 1955 50 1962 W 5 3 T 9S R 5E 2 L 1962 10 4 2715 2903 285 1962 W 5 S 40 T 8S R 4E 2 L 1962 15 4 2715 2675 279 1962 W	LI-73	30 T 6S R	7	J	1958	07/	9	1925	1802	725	1059	:	ı
\$ 17 T 75 R 3E 2 L 1953 37 2.5 \$ 2444 \$ 2404	L.I - 74	61 T 6S R	m	ب.	1959	50	7	2693	2633	-	17,70	3 ∶	7
S 29 T 5S R 3E 2 L 1956 71 3 1628 1608 0 1 1628 1608 0 1 1628 1608 0 1 1628 1608 0 1 1628 1608 0 1 1628 1608 0 1 1628 1608 0 1 1628 1608 0 1 1628 1608 1610 0 1 1628 1610 0 1 1628 1610 1610 0 1 1628 1628 1638 1638 1638 1638 1638 1638 1638 163	LI -77	17 T 7S R	2	<u>, </u>	1953	, ,		2776	2000	!	1	3	ပ
S 49 T 5S R 3E 2 M 1955 66 3 1492 1454 U S 64 T 6S R 2E 2 M 1955 56 2.5 1650 1610 U S 22 T 6S R 4E 2 L 1961 44 3 1965 1935 120 1962 W S 16 T 9S R 5E 2 L 1962 10 4 2715 2903 285 1962 W S 40 T 8S R 4E 2 L 1962 15 4 2715 2675 279 1962 W	11-79	29 T 5S R	۰ ۸	ــ د	1777	7.7	۲۰۶	5447	\$0\$Z	ţ	j	n	Ð
S 64 T 6S R 2E 2 M 1955 66 3 1492 1454 U S 64 T 6S R 2E 2 M 1955 56 2.5 1650 1610 2 S 22 T 6S R 4E 2 L 1961 44 3 1965 1935 120 1962 W S 16 T 9S R 5E 2 L 1962 10 4 2943 2903 285 1962 W S 40 T 8S R 4E 2 L 1962 15 4 2715 2675 279 1962 W	1.1.80	40 7 10 10	. (1 ;	1730	1 /	٠,	9791	1508	!	i i	n	n
S 64 T 6S R 2E 2 M 1955 56 2.5 1650 1610 2.5 S 22 T 6S R 4E 2 L 1961 44 3 1965 1935 120 1962 W 5 16 T 9S R 5E 2 L 1962 10 4 2715 2675 279 1962 W		47 I 35 R	7	Σ	1955	99	ش	1492	1454	!	!	n	'n
S 22 T 6S R 4E 2 L 1961 44 3 1965 1935 120 1962 W 1962 1935 120 1962 W 1962 S 16 T 9S R 5E 2 L 1962 10 4 2943 2903 285 1962 W 2 8 40 T 8S R 4E 2 L 1962 15 4 2715 2675 279 1962 W	LI-82	64 T 6S R	2	×	10 10 10	Y U	C II	7,51	7,71				
S 16 7 98 R 5E	78-I	22 T 65 B	,	: -		2 -	(,,	007	1010	!	1	2	ď.
S 3 T 98 R 5E 2 L 1962 10 4 2943 2903 285 1962 5 4 2715 2675 279 1962	L1-85	16 T 9S R	u v.	<u> </u>	1961	* L	m-	1965	1935	120	1962	:3	Ų
S 40 T 8S R 4E 2 L 1962 15 4 2715 2675 279 1962	77-86	3 T 9C B) (1904	Λ;	₹ -	405	365	50	1962	3	<u>ب</u>
-00 3 40 1 05 H 4E 2 L 1962 15 4 2715 2675 279 1962	1 88	2 00 6 07	7 (د	1962	10	!	2943	2903	285	1962	3	=
	2011	40 1 05 K	7	ب	1962	₹.	17	2715	2675	279	1962	3	· Д

£	. E	= 0	· =	: f	۵	. =	= ==	: U	n	E	; az	n n	= 123	æ	c	. c.	. III	н	Ħ	;	= .	5 G	۔ <u>ت</u>) D	• :	<u>.</u>	0	າ ==	'n	<u>:</u>	· =) <u> </u>	. ۵	ش	=	Ω	m	_	۵.
3	3 3	* 3	3 (3	: [3	3	\$ 3	3 ⊃	2	0	3	: (3	: 5	3 3	3	'n	3	ε 3	3	3	:	≥ 5	3 3	3	: >>	:	3 2	> 13	≥ f-	- ←	i	٠ (-	- {	23	3	(3	[3	' ≆	Z
Î	196/	•	1965	1965	106E	(O) 1	} }	1966	1 1	1967	1001	1	1	!	į	}	ì	1	1		1 :	1 1	1	!		i I	1970	2/7	1972	1972	1072	1972	1968	1972	1973	1973	ţ	1973	1
į	103		25	40	120	2		9	1	77	2 }	į	1	1	;	1 1	1	!	1		† 1	1 1	. 1	1	, ,	120	1900	> !	33	21		23	909	138	37	30	}	1330	ļ
i	3051		1360	1700	2608	2222	1766	2140	;	2280) 	790	2	1804	2054	1854	1598	1596	1	6	1320	1621	1280	104	ć t	10/-	1779	2560	1410	2145	717	1245	1695	2200	1480	1275	365	2405	1
1620	3081	2100	1384	1730	2648	2267	1.73	21.70	1300	2300	2000	5005	520	1844	2085	1884	1658	1616	1700	9/4/	1360	1661	1300	114		1/3/	1898	2570	1420	2165	1425	1255	1755	2230	1490	1285	380	2505	2068
~) e~	, !	۲	2	~	۰ ۸	· ^i	m	m	~	° ~	<u>.</u> در.	برئ	٣	2	~	2	2	E t	Ĺ	, v . «	; ; ;	> ~	2	r	ሳሉ	1 ,∞	· <	2	2	^	- 2	9	~	2	2	2	9.6	}
2,8	44	5.1	42	019	7	78	4.2	55	84	16	20	11	27	4.1	75	07	47	53	56	C tu	37	89	35	63	3.7	17	. .	34	35	52	1,8	911	36	30	53	53	35	\$ \$ \$ \$	દ
i	1964	1964	1937	1955	1965	1960	1959	1966	1942	1967	1960	1952	1960	1955	1957	1960	1962	1962	1	1962	1964	1967	1961	1	1960		1970	1972	1972	1972	1972	1972	1968	1972	1973	1973	1973	1973	19/3
Œ	-1	J	13	X		ŗ	×	ы	m.	1	Σ		L	n	Ω	Σ	Σ	×	Σ	Ε	=	Σ	'n	7	≥	: 1	Σ	Ω	T.	7	n		×	٥	n	۳.	₊1:	> .	٦
7	m	~	••••	2	7	2	~	2	****	~	2	S	s	7	٣	2	7	7	2	^	ı <	2	4~~4	S	^	ı va	2	~	quel	2	~	quel	2	2	2		တင	~ c	7
12 T 6S R	32 T 6S R	48 T 6S R	SR	39 T 6s	58 T 8s R	30 T 6S R	21 T 6S R	S 18 T 6S R 4E	30 T 6S R	40 T 75 R	16 T 7S R	45 T 7S R	S 4 T 7S R 6E	24 T 6S R	45 T 5S R	35 T 6S R	38 T 6s R	S 13 T 6S R 5E	2 T 6S R	11 T 6S R	39 T 6S R	9 T 6s R	s 37 T 6s R 6E	27 T 5S R	39 T 6S R	23 T 65 R	42 T 75 R	S 36 T 6S R 3E	36 T 6S R	59 T 6S R	59 T 6S R	S 59 T 6S R 2E	37 T 75 R	37 T 65 R	10 T 6S R	10 T 6S R	⊢ €	34 T 65 P	74 I 03 N
LI-89	LI-91	LI-92	LI-93	76-17	LI-100	1.1-102	LI-103	7		LI-114	-11	-12	LI-123	-12	-	$LI - 12\bar{7}$	4	1	LI-131	1.1-132	LI-137	LI-138B	LI-142	LI-143	LI-144	LI-148		LI-151	LJ-152		7	LI-155) hand		-	7	LI-161	· -	ĭ

TABLE 10. -- RECORDS OF SELECTED WATER WELLS IN LIVINGSTON AND ST. HELENA PARISHES -- CONTINUED

LOCAL WELL NUMBER	LOCATION SEC. T. R.	AQUIFER UNIT	SAND	YEAR COMPLETED	ALTITUDE ,OF LAND SURFACE (FEET)	CASING DIAM- ETER (INCHES)	DEPTH OF WELL (FEET)	DEPTH TO FIRST OPENING (FEET)	DISCHARGE (GALLONS PER MINUTE)	DATE DISCHARGE MEASURED	USEOF	USE OF
					LIVINGSTON	PARISHCONTINUED	TTINUED	Carrier of the Carrie				
LI-164	S 24 T 7S R 4E	ι.	=	1967	7	r						
LI-165	35 T 75 B) +-	> :	1061	77	>	315	-	1	1	;3	×
1.1.166	. F	(⇒	1959	56	2.5	1092	1072	;	1	: 3	: 5
27 17	7 1 /3 K	S	 }	1973	35	77	620	009	į		3 ;	.
791-17	41 T 6S	တ	_	1973	34	17	620	600	f I	1 ;	3	۵.
LI-168	25 T 6S R	S	Lì	1971	64	^	235	200	1	1	3	۵.
,)	J	433	1	i i	1	3	¥
LI-169		S	-1	1973	ά u	. 7	0)0	3				
LI-170A	S 35 T 7S R 4E	-	ı =	1075) -	, (097	245	į	1	3	۵.
LI-170B	35 T 75 R	. 0	۱ (1973		7	1068	1058	20	1975	۲	Ξ
1.1 - 1 700	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	י מ	J ;	1975	11	2	610	009	30	1975	· £	> =
LI-171	2 37 1 (3 K 4E	s a	n,	1975	11	2	310	300	; c	7001	- - {	⊃ ;
¥ - 1	JU 1 JS R	S)	u	1975	9	2	275	265	202	1975	⊢ F	-
LI-172A	36	U	۰	0.77	ć	,					**	D)
LI-172B	34 T 6c B) (۱,	1975	33	7	495	485	53	1975	Ę-	**
11.173	J4 1 05 R	'n	L)	1975	33	7	290	280	, c.	1077	 :	-
11-17	41 T 7S R	S	7	1	35	9	621	>	÷	1975	3	۵.
L1-174	T 9s	ß	Ω	1976	7-7	> ^	651	1 6	1	:	3	٦
LI-175	22	7	×	1974	50	2 <i>-</i> 27	1866	431	i I	I i	3	Ħ
							0007	1010	1 }	1	33	۵
LI-176A	T 6s	Ħ		1978	7	4	((
LI-176B	40 T 6S R	U,	_	1078	0 0	,	1333	1313	17	1978	۴	n
LI-177		> <	₽	1970	0 t c	z -	560	540	50	1978	⊱	5
LI-178	27 T 65 B	١٨	: 2	0161	55 - }	÷ ,	1777	1	09	1978	3	· =
1.1.170	100 100	V	Ξ	1971	07	9	1900	1	90	1078	: :	= :
611.70	Z/ 1 05 K	~	<u>بــا</u>	1956	1,0	77	2021	1981	10	1978	≥ 5	= =
LI-181	48 T 6s	٣	=	Ċ C		Ç					:	=
LI-183	10 T 6S R)	>	1970	ر د د	∞ •	2432	2340	800	1978	13	۵
LI-184A	Ω	۳,	-	1973	53	უ .	1285	1245	1	: 1	: 33	. ≏
LI-184B	40 T 6S R) n	: נ	1979	40	~	2930	2910	32	1979	: £	- E
101	1 10 10 10 10 10 10 10 10 10 10 10 10 10	^	>	1979	01/	2.4	2459	2449	30	000+	-	Þ
57-103	30 T /S	m	n	1980	37	82	2611	2531	805	6/61	⊢ ⊋	-
LI-186A	S 40 T 68 R 6E	0	2	000			,		٧.		š	<u>.</u>
LI-1868	ייט די ליט די	v •	£ .	1979	01/	1	1670	1660	38	1979	F	=
1.1-180	2 2	-	U,L	1979	07	2.4	1039	1029		1070	~ {	⇒ ;
11 100	11 T 55 R	m	n	1979	84	2.4	7240	2320	3 6	6/61	<u>;-</u> -	Ω
L1-190	11 T 5S	~	n	1979	8%		21.50	2,250	07	1979	F	n
LI-193	40 T 6S R	2	×	1979	36	2 9	4,75	<135 -175	21	1979	←	n
					2	>	1/01	1647	569	i i	3	۵

= a a a a -	прпнан		e e s s	<u> =</u>	= ←	⊬ z	Œ.	==	C =	======================================	כם	= =	n	Ω	: c	3 4 E
33333	22244		3333	W	33	33	A	33	33	: 23	D &	3 F	F	Ęm	E E	- 38 (
1983			1 1 1 1	1	1 1	1958	1	1 1 1 1	i ! i i	1	1 1		;	;	i i	; ; ;
151 50 750			300 60 1200 70	!	! :	200	\$ }	} 1 { I	; ; ; ;	12	23	35	54	20	27	25
1015 280 2. 1800 317	2307 1790 290 120		1633 2052 2059 2106	1 2		1931 150	1568	160	108	901	140 1855	160 2380	1993	2145	1575	1775 2485
1280 1065 300 600 1900 347	2347 1830 330 305 130	HS	1683 2082 2120 2135	25	52 165	1963 170	1608	170 74	118 165	116	150 1865	170 2390	2013	2155	1590	1805 2495
~ ~ ~ ~ ~ & ~		HELENA PARISH	4 2.5 2.5 2.5	ω .	7 7	8 2.5	ش	48	7 7	4	1.9	7 7	1,	2	2 %	1 7 7
73 80 80 40 15	60 20 25 25 24	ST.	220 124 98 165	242	262 165	205 318	250	253 330	268 210	183	270 155	213 205	205	146	146 146	146 200
1983 1983 1983 1983 1984	1984 1984 1962 1974 		1954 1955 1956 1960	i	1 1	1954 1958	1961	i (i i	1960	1962	1969	1970	1970	1973	1973	1973
	n 1 L L C C			، د	л ப	נט	D	ے د	ב ב	្ឋ .	<u>.</u> 5	п ¦	ı	n	ے د	ן מו
~ ~ ~ ~ ~ ~ ~	m ∾ ທ ທ ທ ທ		m m m m	ω (တ တ	സം	ς,	တ ဟ	တ တ	s o	nη	s r	\sim	3	2 2	ımm
S 27 T 55 R 3E S 36 T 75 R 4E S 14 T 55 R 3E S 3 T 75 R 4E S 24 T 65 R 4E S 42 T 75 R 6E	S 4 T 6S R 3E S 4 T 6S R 3E S 20 T 8S R 5E S 9 T 6S R 3E S 31 T 7S R 4E S 18 T 7S R 5E		S 59 T 2S R 5E S 51 T 4S R 6E S 36 T 4S R 5E S 73 T 2S R 4E	77 T 1S R	3 T IS R	S 28 T 35 R 6E S 4 T 15 R 5E	34 T 25 R	S 35 T 28 R 6E S 15 T 18 R 6E	14 T 2S 21 T 3S	27 T 3S R	34 1 25 R 12 T 45 R	s 33 T 3s R 6E s 77 T 2s R 4E	77 T 2S R	45 T 4S R	45 T 4S R 45 T 4S R	S 45 T 45 R 4E S 59 T 28 R 5E
LI-195 LI-196 LI-197 LI-198 LI-199 LI-202	LI-204B LI-204C LI-205 LI-209 LI-212 LI-217		SH- 5 SH- 7 SH- 8 SH- 8	SH-11	SH-16	SH-18 SH-19	SH-21	SH-22 SH-23	SH-25 SH-27	SH-28	sn-29 SH-30	SH-31 SH-32A	SH-32B	SH-33A	SH-33B SH-34A	SH-34B SH-35

TABLE 10. -- RECORDS OF SELECTED WATER WELLS IN LIVINGSTON AND ST. HELENA PARISHES -- CONTINUED

	SEC. T. R.	AQUIFER UNIT	SAND	YEAR COMPLETED	OF LAND SUBFACE (FEET)	DIAM- ETER (INCHES)	DEPTH OF WELL (FEET)	DEPTH TO FIRST OPENING (FEET)	DISCHARGE (GALLONS PER MINUTE)	DATE DISCHARGE MEASURED	USE OF SITE	USE OF WATER
					ST. HELENA	ST. HELENA PARISHCONTINUED	TINUED		- 4100			
SH-36	59 T 2S B	۳,	E	1073	o o	,						
SH- 37	3t + 10) (, د	23.5	007	7	1595	1585	20	;	£	=
10.10	32 I 43 K	'n	J	1967	245	**	175	4.7.R			• :	> +
SH-39	61 T 4S R	~	D	1977	130	^	1870	0.0.	i i	ł I	38	တ
07-HS	43 T 4S R	, (v	=	1980	12,	2 2	10/0	1850	ļ	1 ;	3	c.
SH-41		2 (, 1	1980	160	> ~	/907 1600	15.70	; 1	ŧ,	3 ;	, بم
SH-42	13 T 3S	υ	٠	ç Ç	ć) - -	,	‡ 	3	×
77-HS	17 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n (: د	1903	180	!	150	110	85	;	3	2
	145 H	უ	D	1970	151.86	1	1865	1			≩ ;	5 . 1
SH-45	48 T 4S R	w	J	1 3	66	7	, n		† I	I t	3	2.,
SH-46	41 T 3S R	S		į	184	7	,	;	1	1	3	Ħ
SH-47	49 T 3S	S	, <u>, ,</u>	1	19.5	# ~=	120	;	<u>;</u>	1,	∃ ₹	c
			ł		76	.	011	;	<u>:</u>	ţ	3	×
SH-48	43	S	ب	1	21/5							
SH-49		ß		į	24.0	- 7	1 1	1 }	1	1	3	×
H-50	37 T 4S B	ď	٠ -) (t 1	÷ ~	δ,	!	1	ţ	3	100
SH-52	69) V.		! }	152	* ~	210	;	1	;	73	c
SH-53	37 T 20 B) (₽.	!	747	3 7	100	% 22	í	;	: 3	1 12
}	0 7 7 1C	n	_	1	170	Φ	25	1	1	ł	3	: r
SH~54	57	S		198/	306	~	,					
1-55	50 T 35 B	· u	۱ ـ	1001	5.55	₹ .	100	!	1	1	3	a
SH-56	S 50 T 62 B 3E	o 0	ָנ.	1964	120		180	165	1	!	: 3	: 12
SH-57	1,5 T 1,5 D) (3 ,	1904	1.)	†	160	1.45	!	1	: 3	⇒ 5
- 0 - 1	4) 1 45 E	'n	۳.	1957	114	77	45	, ; ;	:		≩ ;	c ;
5H-50	54 T 2S	လ	J	1	242	77	130		[!	3	=
SH-59	1 T 3S R	s	ر	1981	268	7	56.	! 6	;	i	3	Ξ
,					• •		÷. 1 ч	££	í	ţ	3	æ
SH-60	œ	S	Ļ	1	291	~7	100					
SH-61	48 T 2S	S		1958	160	10	2 0	!	;	i i	3	Ω
SH-62	37 T 2S R	S		, ;	287	10	200	I t	ļ	į	3	
SH-63	68 T 1S R	V.	3 44		000	> :	*0	;	1	1	ລ	Þ
1-65	33 ∓	» «	. i	i	200	10	20	20	;	1	.3	=
SH-66	77 T 20 E		ο,	1984	197	12	2012	1942	;	ļ	: 2	
)	5 7 7 7 7	•		Lix C		,				i		-

[SAND BED: U, UPPER; M, MIDDLE: L, LOWER. L. LABORATORY MEASUREMENT SUBSTITUTED FOR FIELD MEASUREMENT; µS. MICROSIEMENS PER CENTIMETER AT 25 °C; °C. DEGREES CFLSIUS; MG/L, MILLIGRAMS PER LITER; µG/L, MICROGRAMS PER LITER; ALTITUDE IS REFERENCED TO SEA LEVEL.] TABLE 11. -- SELECTED COMMON CONSTITUENTS IN GROUND WATER IN LIVINGSTON AND ST. HELENA PARISHES

95 5E 16 U 405 5 84-05-30 624 8.3 23.5 2 63 16 75 4E 35 U 441 4 75-02-18 222 7.0 21.0 40 50 15 75 4E 13 U 441 4 75-02-18 222 7.0 21.0 40 50 15 75 6E 42 U 347 15 84-12-18 173 6.4 20.5 30 31 9.0 75 5E 18 U 347 15 84-12-18 173 6.4 20.5 30 31 9.0 75 5E 18 U 347 15 84-12-18 173 6.4 20.5 30 19 75 6E 10 L 155 165 84-03-10 45 5.4 20.5 30 19 75 6E 10 L 170 253 69-11-25 32 5.6 20.5 15 8 118 75 6E 35 L 170 253 69-11-25 32 5.6 20.5 15 15 12 75 6E 35 L 170 253 69-11-25 32 5.6 20.5 15 12 75 8E 49 L 100 142 84-05-21 59 5.1 23.0 5 60 16 75 8E 40 L 260 89 74-04-05 224 6.7 20.5 0 60 16 75 8E 41 L 620 34 84-05-21 59 5.1 23.0 5 70 19 75 8E 42 L 260 89 74-03-07 61 6.1 0 19 75 8E 42 L 260 89 74-03-07 113 5.9 20.0 0 60 16 75 8E 46 36 L 495 33 75-09-17 169 6.5 21.5 4 33 10 75 9E 46 1	7 7	LOCATION R. SE	ATION R. SEC.	SAND	DEPTH OF WELL (FBET)	ALTITUDE OF LAND SURPACE (FEET)	DATE OF SAMPLE	SPE- CIFIC CON- DUCT- ANCE (µS)	FIELD PH (STAND-ARD UNITS)	TEMPER- ATURE ATURE (DEG °C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
16 U 405 5 84-05-30 624 8.3 23.5 2 6 6 31 4 75-02-18 222 7.0 21.0 40 50 11 75-02-18 222 7.0 21.0 40 50 11 4 75-02-18 222 7.0 21.0 50						SHAL	LLOW AQUIF	SR UNIT				The state of the s	
35 0 310 17 75-02-30 0.24 0.3 24.5 2 6.5 1 175-02-30 24.5 2 6.5 1 1 1 1 1 75-02-30 2 1 2 3		ft [7	Α.	5	7.05	u	8/. oc	107	c	4	,		•
11 0 441 4 76-08-31 298 7.6 22.0 40 50 42 0 347 15 84-12-18 311 7.5 22.0 40 50 18 0 347 15 84-12-18 311 7.5 0 56 11 10 15 24 26 84-03-14 22 5.61 21.5 15 84 10 165 36 84-03-20 45 5.41 20.5 20 4 35 1 170 253 64-11-25 32 5.6 20.5 10 56 11 4 1 170 253 64-11-25 32 5.4 20.5 10 4 6 10 4 6 10 4 6 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10		7.4 T	ž ř.	> =	310	^=	75-02-30	223	o t	23.5	~ {	63	9.
6E 42 U 347 15 84-12-18 173 6.4 20.5 30 31 5E 18 U 130 24 84-12-18 311 7.5 9 31 5E 10 15 24 84-03-16 22 5.41 21.5 15 8 5E 4 L 170 23 67-01-17 23 5.4 20.0 10 4 6E 35 L 170 238 69-11-27 23 5.4 20.0 10 4 6 6E 35 L 170 253 69-11-27 23 5.4 20.0 10 4 6 6 11 6 10 4 6 11 6 11 7 20.5 10 4 6 11 4 6 11 4 6 11 4 6 11 4 6 11 4		4 15	11	Ď	441	7	76-08-31	298	2.6	22.0) (2 2)5 7
5E 3 L 52 262 84-03-14 22 5.61 19.5 20 4 6E 10 1 165 165 84-03-24 45 5.41 21.5 15 8 5E 4 L 170 318 67-01-17 23 5.4 20.0 10 4 6E 35 L 170 253 69-11-25 32 5.6 20.5 10 4 6 6E 35 L 170 253 69-11-25 32 5.6 20.5 5 7 6E 35 L 170 253 69-11-25 32 5.6 20.5 5 7 5E 49 L 100 142 84-05-21 59 5.1 20.5 60 11 5E 40 L 60 7.03-07 61 6.7 20.5 60 11 5E 41 60 </td <td></td> <td>රස 5ස</td> <td>18</td> <td>n</td> <td>347</td> <td>15 24</td> <td>84-12-18 84-12-18</td> <td>173</td> <td>6.4</td> <td>20.5</td> <td>, & o</td> <td>31 56</td> <td>9.0</td>		රස 5ස	18	n	347	15 24	84-12-18 84-12-18	173	6.4	20.5	, & o	31 56	9.0
5E 4 L 170 318 67-01-17 23 5.4 20.0 10 4 6E 35 L 170 253 69-11-25 32 5.6 20.0 10 4 6E 35 L 170 253 69-11-25 32 5.6 20.0 10 4 6E 35 L 175 75-07-02 31 5.6 20.0 10 4 6 5E 4 L 170 192 84-05-21 28 5.2 24.0 5 6 6.7 20.5 7 6 6 6 10 6 6 11 7 6 6.7 20.5 5 7 6 6 6 11 6 6 6 11 6 6 11 6 6 11 6 6 11 6 12 10 6 11 6 11 6 12		5E	20	ا د	52 165	262	84-03-14	22 65	5.6 _L ,	19.5	20	4 0	. 95
6E 35 L 170 253 69-11-25 32 5.6 20.5 5 7 6E 14 L 118 268 84-05-21 28 5.2 22.5 10 5 5E 49 L 110 192 84-05-21 59 5.2 24.0 5 6 5E 49 L 110 192 84-05-21 49 5.1 23.0 5 6 5E 49 L 100 142 84-05-21 49 5.1 23.0 5 6 5E 41 L 620 34 84-05-21 49 5.1 20.5 6 19 5E 41 L 620 34 84-05-24 6.7 20.5 5.1 6 5E 41 L 620 34 84-05-24 56 6.2 21.0 5 13 6E 39 L 260 <td></td> <td>35</td> <td>77</td> <td>· Li</td> <td>170</td> <td>318</td> <td>67-01-17</td> <td>23</td> <td>- ~.</td> <td>20.02</td> <td>Ç</td> <td>o</td> <td>o</td>		35	77	· Li	170	318	67-01-17	23	- ~.	20.02	Ç	o	o
6E 14 L 118 268 84-05-21 28 5.2 22.5 10 5 6E 35 L 175 75-07-02 31 5.6 21.0 4 6 5E 49 L 110 192 84-05-21 55 5.2 24.0 5 6 3E 16 L 100 142 84-05-21 49 5.1 23.0 5 7 3E 16 L 500 35 74-04-05 224 6.7 20.5 6 7 5E 2 L 620 35 74-03-05 231 8.2 2.3.0 5 7 5E 41 L 620 34 84-05-30 246 6.7 23.5 15 8 6E 39 L 200 32 23.0 23.5 15 33 11 5E 40 60 84-05-24 56 </td <td></td> <td><u>9</u>9</td> <td>35</td> <td>μì</td> <td>170</td> <td>253</td> <td>69-11-25</td> <td>35</td> <td>5,6</td> <td>20.5</td> <td>- - - -</td> <td>. 1~</td> <td>. 7</td>		<u>9</u> 9	35	μì	170	253	69-11-25	35	5,6	20.5	- - - -	. 1~	. 7
6E 35 L 175 75-07-02 31 5.6 21.0 4 6 5E 49 L 110 192 84-05-21 55 5.2 24.0 5 6 4E 69 L 110 192 84-05-21 59 5.2 24.0 5 7 3E 16 L 380 35 74-04-05 224 6.7 20.5 0 60 5E 2 L 620 34 84-05-30 246 7.3 23.5 15 8 5E 39 L 260 85 84-05-34 56 6.2 21.0 5 13 4E 35 L 610 11 75-02-13 240 7.2 23.0 20 13 5E 36 L 495 33 75-03-20 113 5.9 20.0 0 27 4B 36 L 495 </td <td></td> <td>9</td> <td>14</td> <td>H</td> <td>118</td> <td>268</td> <td>84-05-21</td> <td>28</td> <td>5.2</td> <td>22.5</td> <td>10</td> <td>· IO</td> <td>1.2</td>		9	14	H	118	268	84-05-21	28	5.2	22.5	10	· IO	1.2
5E 49 L 110 192 84-05-21 55 5.2 24.0 5 7 3E 49 L 100 14.2 84-05-21 49 5.1 23.0 5 7 3E 16 L 380 35 74-04-05 224 6.7 20.5 0 60 5E 2 L 620 35 74-04-05 224 6.7 20.5 0 60 5E 3 L 620 34 84-05-30 246 7.3 23.5 15 19 6E 39 L 260 85 84-05-24 56 6.2 21.0 5 13 6E 39 L 260 85 84-05-24 56 6.2 21.0 5 13 5E 34 1 75-02-13 240 7.2 23.0 20 13 4E 36 L 250 33<		9E	35	J	175		75-07-02	31	5.6	21.0	77	9	7.5
3E 40 1 20 </td <td></td> <td>5E</td> <td>64</td> <td>نہ ب</td> <td>110</td> <td>192</td> <td>84-05-21</td> <td>55</td> <td>5.2</td> <td>24.0</td> <td>ſς</td> <td>91</td> <td>4.</td>		5E	64	نہ ب	110	192	84-05-21	55	5.2	24.0	ſς	91	4.
41 L 620 35 74-03-05 231 8.2 0 19 41 L 620 34 84-05-30 246 7.3 23.5 15 8 39 L 260 85 74-03-07 61 6.1 0 13 35 L 610 11 75-02-13 240 7.2 23.0 20 49 36 L 275 60 75-03-20 113 5.9 20.0 0 27 36 L 631 35 75-09-17 169 6.5 21.5 4 33 41 L 631 35 76-03-24 237 7.0 23.0 0 44 41 L 631 35 76-03-24 237 7.0 23.0 0 44 41 L 560 40 78-09-26 146 6.4 24.0 5 51 41 L 550 40 78-09-26 146 6.4 24.0 5 31 41 L 300 80 84-03-22 56 5.9 20.5 15 37		7.	. 4		380		7404.05	700	, ,	20.0	Λ «	- (0
41 L 620 34 84-05-30 246 7.3 23.5 15 8 39 L 260 85 74-03-07 61 6.1 0 13 35 L 260 85 84-05-24 56 6.2 21.0 5 13 36 L 275 60 75-03-20 113 5.9 20.0 0 27 36 L 275 60 75-03-22 163 6.5 21.5 4 33 36 L 290 33 75-09-22 163 6.2 20.5 0 27 41 L 631 35 76-03-24 237 7.0 23.0 0 44 40 L 631 35 76-03-24 237 7.0 23.0 0 44 40 L 631 35 76-03-24 23.7 6.8 23.0 5 5 </td <td></td> <td>35</td> <td>2</td> <td>נה</td> <td>620</td> <td>35</td> <td>74-03-05</td> <td>231</td> <td>8.2</td> <td>۲۵۰5 </td> <td>00</td> <td>09 12</td> <td>16 5.3</td>		35	2	נה	620	35	74-03-05	231	8.2	۲۵۰5 	00	09 12	16 5.3
4E 35 L 260 85 84-05-24 56 6.2 21.0 5 13 5E 36 L 275 60 75-03-20 113 5.9 20.0 0 27 4E 36 L 290 33 75-09-27 169 6.5 21.5 4 33 5E 41 L 631 35 76-03-24 237 7.0 23.0 0 44 5E 40 L 560 40 78-09-26 146 6.4 24.0 5 31 3E 41 L 560 40 78-09-26 146 6.4 24.0 5 31 3E 41 L 550 40 78-09-26 146 6.4 24.0 5 31 4E 36 L 300 80 84-03-22 56 5.9 20.5 31		5E 6E	41	ب د	620	34	84-05-30	246	7.3	23.5	15	ထင်	2.3
4E 35 L 610 11 75-02-13 240 7.2 23.0 20 49 5E 36 L 275 60 75-03-20 113 5.9 20.0 0 27 4E 36 L 290 33 75-09-17 169 6.5 21.5 4 33 4E 36 L 290 33 75-09-22 163 6.2 20.5 0 31 3E 41 L 631 35 76-03-24 237 7.0 23.0 0 44 6E 40 L 560 40 78-09-26 146 6.4 24.0 5 50 3E 41 L 550 80 84-03-22 56 5.9 20.5 5 14 6E 40 L 550 80 84-03-22 163 5.9 20.5 5 31 6E 40 L 550 40 78-09-26 146 6.4 24.0 5 31 6E 40 L 550 40 78-09-26 146 6.4 24.0 5 31 6E 40 L 550 40 78-09-26 146 5.9 20.5 5 31 6E 40 L 550 40 78-09-26 146 5.9 20.5 5 31 6E 40 L 550 40 78-09-26 146 5.9 20.5 5 31				1	260	85	84-05-24	95	6.2	21.0	> LC	<u>, t</u>	
5E 36 L 275 60 75-03-20 113 5.9 20.0 0 27 4E 36 L 495 33 75-09-17 169 6.5 21.5 4 33 4E 36 L 290 33 75-09-22 163 6.2 20.5 0 31 3E 41 L 631 35 76-03-24 237 7.0 23.0 0 44 CE 40 L 550 40 78-09-26 146 6.4 24.0 5 31 3E 14 L 300 80 84-03-22 56 5.9 20.5 5 14 4E 3 L 35 84-05-30 188 6.7 22.5 15 37		4	35	Ļ	610		75-02-13	240	7.2	23.0	°2°	. <u>~</u> . &	7. 4.
36 L 495 33 75-09-17 169 6.5 21.5 h 33 36 L 290 33 75-09-22 163 6.2 20.5 0 31 h1 L 631 35 76-03-2h 237 7.0 23.0 0 hh h0 L 560 h0 78-09-26 146 6.4 24.0 5 31 h1 L 300 80 84-03-22 56 5.9 20.5 5 14 3 L 35 84-05-30 188 6.7 22.5 15 37		7 E	36	ت	275	09	75-03-20	113	5.9	20.0	0	27	7.0
36 L 290 33 75-09-22 163 6.2 20.5 0 31 41 L 631 35 76-03-24 237 7.0 23.0 0 44 L 631 35 76-07-23 234 6.8 23.0 5 50 40 L 560 40 78-09-26 146 6.4 24.0 5 31 14 L 300 80 84-03-22 56 5.9 20.5 5 14 3 L 35 84-05-30 188 6.7 22.5 15 37		φ.	36	'n	495		75-09-17	169	6.5	21.5	7	33	10
3E 41 L 631 35 76-03-24 237 7.0 23.0 0 44 L 631 35 76-07-23 234 6.8 23.0 5 50 6E 40 L 560 40 78-09-26 146 6.4 24.0 5 31 3E 14 L 300 80 84-03-22 56 5.9 20.5 5 14 4E 3 L 35 84-05-30 188 6.7 22.5 15 37		4	3ę		290		75-09-22	163	6.2	20.5	0	3.	9.5
40 L 560 40 78-09-26 146 6.4 24.0 5 50 14 L 300 80 84-03-22 56 5.9 20.5 5 14 3 L 35 84-05-30 188 6.7 22.5 15 37		3 E	4.1	ے نہ	631		76-03-24	237	7.0	23.0	0	44	10
14 L 300 80 $84.03-22$ 56 5.9 20.5 5 31 3 L 35 $84.05-30$ 188 6.7 22.5 15 37		A.	7.0	2 L	7,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00		70 00 36	2.54	ρ. .α	23.0	ויאו	50	15
3 L 35 84-05-30 188 6.7 22.5 15 37		38	14	י, נ	300		84-03-22	140 56	ים פיסי	24.0 20.5	ኒ/ ኒ	37	ص د حن د
		4E	_ش	□	1		84-05-30	188	2.9	22.5	ئ ب ئ	37	ر. ر.

TABLE 11. -- SELECTED COMMON CONSTITUENTS IN GROUND WATER IN LIVINGSTON AND ST. HELENA PARISHES -- CONTINUED

COLOR HARD- CALCIUM CALCIUM CALCIUM CALCIUM CON- PH TEMPER- (PLAT- NESS DIS- NESS	1														
75 4E 35 U 1090 26 74-03-05 276 8.0 5 5 7		LO(TION . SEC.	SAND	DEPTH OF WELL (FEET)	ALTITUDE OF LAND SURFACE (FEET)		,	_	•				ALCIUM BIS- SOLVED (MG/L AS CA)	
5 75 4E 35 U 1090 26 74-03-05 276 8.0 5 5 5 6.0 U/L 1050 17 75-02-03 284 8.1 25.0 0 17 6.0 6.0 6.0 17 6.0 6.0 6.0 17 6.0 6.0 17 6.0 6.0 17 6.0 6.0 17 6.0 6.0 17 6.0 6.0 17 6.0 6.0 17 6.0 6.0 17 6.0 6.0 17 6.0 6.0 17 6.0 6.0 17 6.0 6.0 6.0 17 6.0 6.0 17 6.0 6.0 6.0 17 6.0 6.0 17 6.0 6.0 6.0 17 6.0 6.0 6.0 6.0 17 6.0 6.0 6.0 6.0 17 6.0 6.0 6.0 6.0 17 6.0 6.0 6.0 6.0 17 6.0 6.0 6.0 6.0 17 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0							AQUJFER	UNIT 1							
Value Valu	20,0	7s		Ω	1090	26	74-03-0			0	}	:	7.	1	
65 6E 23 L 1380	₹₩	s)		0/L	1060 1030	111	75-02-0				0 0	0	17	4.0	
6\$ 6E 23 L 1380 42 65-08 24 178 6.9 26.5 10 9 3.0 6\$ 5E 2E 59 L 1420 35 72-02-23 258 8.0 25.5 5 5 4 1.1 6\$ 6S 6E 10 L 1280 53 72-03-23 232 7.2 25.5 5 5 16 5.6 6\$ 6E 10 L 1280 53 73-06-01 181 7.0 25.5 5 5 16 5.6 6\$ 6E 40 L 1330 40 78-09-11 212 6.9 27.0 5 10 3.0 MAGNE- SIUM. SODIUM. SIUM. LINITY SULFATE RIDE. RIDE. DIS- SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED (MG/L DIS- TOTAL SOLVED SOLVED SOLVED SOLVED SOLVED TOTAL SOLVED SOLVED AS MG/L (MG/L AS MG/L CONST. CMG/L CMG/	961	28		Ω	1060	25	84-03-2				0.0	ν ∞	54	5.2 1.9	
2 65 3E 36 L 1420 35 72-02-23 258 8.0 25.5 5 4 1.1 5 65 2E 59 L 1250 46 72-03-23 258 8.0 25.5 5 5 16 5.6 6 65 6E 10 L 1280 53 73-06-01 181 7.0 25.5 5 16 5.6 6 6 6 6 6 6 6 6 6 6 72-03-23 232 7.2 25.5 5 16 5.6 6 73-03-23 232 7.2 25.5 5 16 5.6 73-06-01 181 7.0 25.5 5 16 5.6 73-06-01 181 7.0 25.5 5 16 5.6 73-06-01 181 7.0 25.5 5 16 5.6 73-06-01 181 7.0 25.5 5 16 5.6 73-06-01 181 7.0 25.5 5 16 5.6 73-06-01 181 7.0 25.5 5 16 5.6 73-06-01 181 7.0 25.5 5 16 5.6 73-06-01 181 7.0 25.5 5 16 5.6 73-06-01 181 7.0 25.5 5 16 5.6 73-06-01 181 7.0 25.5 5 16 5.6 73-06-01 181 7.0 25.5 5 16 5.6 73-06-01 181 7.0 25.5 5 10 3.0 73-06-01 181 7.0 25.5 5 16 5.6 73-06-01 181 7.0 25.5 5 10 3.0 73-06-01 181 7.0 25.5 5 10 3.0 73-06-01 181 7.0 25.5 5 10 3.0 73-06-01 181 7.0 25.5 5 10 3.0 73-06-01 181 7.0 25.5 5 10 3.0 73-06-01 181 7.0 25.5 5 10 3.0 73-06-01 181 7.0 25.5 5 10 3.0 73-06-01 181 7.0 25.5 5 10 3.0 73-06-01 181 7.0 25.5 5 26.5 73-06-01 181 7.0 25.5 5 26.5 73-06-01 181 7.0 25.5 73-06-01 181 7.0 25.5 73-06-01 181 7.0 25.5 73-06-01 181 7.0 25.5 73-06-01 181 7.0 25.5 73-06-01 181 7.0 25.5 73-06-01 181 7.0 25.5 73-06-01 181 7.0 25.5 73-06-01 181 7.0 25.5 73-06-01 181 7.0 25.5 73-06-01 181 7.0 25.5 73-06-01 181 7.0 25.5 73-06-01 181 7.0 25.5 73-06-01 181 7.0 25.5 73-06-01 181 7.0 25.5 73-06-01 181 7.0 25.5 73-06-01 7.0 25.5 73-06-	33	89		ų	1380	42	65-08 2				Ľ	c	o	~ ~	
66 65 6E 10 L 1280 53 73-06-01 181 7:0 25:5 5 16 5:6 66 65 6E 10 L 1280 53 73-06-01 181 7:0 25:5 5 10 2.4 66 65 6E 10 L 1330 40 78-09-11 212 6:9 27:0 5 10 3:0 MAGNE- POTAS- ALKA- CHLO- FLUO- SILICA, SUM OF NITRO- NANGA- SIUM, SODIUM, SIUM, LINITY SULFATE RIDE, RIDE, DIS- CONSTI- GEN, IRON, NESE, DATE DIS- DIS- FIELD DIS- DIS- SOLVED SO	152	68 68		۰.	1420	35	72-02-2				, ī.	5 20	r-4 ·	1.1	
64 65 6E 40 L 1280 53 73-06-01 181 7.0 25.5 5 8 2.4 64 65 6E 40 L 1330 40 78-09-11 212 6.9 27.0 5 10 3.0 MAGNE- POTAS- ALKA- CHLO- FLUO- SILICA, SUM OF NITRO- NESE, SIUM, SODIUM, SIUM, LINITY SULFATE RIDE, DIS- CONSTI- GEN, IRON, NESE, DATE DIS- DIS- FIELD DIS- BIS- DIS- TOTAL SOLVED SO	33	3 5		٦	1250	97	72-03-2				5.5	5	16	5 6	
MAGNE- POTAS- ALKA- CHLO- FLUO- SILICA, SUM OF NITRO- MANGA-SIUM, SODIUM, SIUM, LINITY SULFATE RIDE, RIDE, DIS- CONSTI- GEN, IRON, NESE, DATE DIS- DIS- PIELD DIS- DIS- SOLVED TUENTS, NITRATE DIS- DIS- SOLVED SOLV	76	6S A 6S		د د	1280 1330	53 40	73-06-0 78-09-1				5.5	ñν	8 10	3.0	
	LOCATION . R. SE			w	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L	SILICA, DIS- SOLVED (MG/L AS	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED	NITRO- GEN. NITRATE TOTAL (MG/L			CARBON, ORGANIC TOTAL (MG/L
	5E 1 4E 3			91 26	3.2	132	3.7	97.8.0	.10	34	340	; c	78	140	.40
84-05-30 5.5 91 1.4 132 3.7 97 .10 46 340 78 140 75-02-18 3.1 26 3.2 97 4.6 8.0 10 34 150 19 2100 460	7			61	1.8	136	٧.	10) C	ر م	ر ر 10	/ T .	250	2007	1
84-05-30 5.5 91 1.4 132 3.7 97 .10 46 340 78 140 75-02-18 3.1 26 3.2 97 4.6 8.0 .10 34 150 .19 2100 460 76-08-31 .20 61 1.8 136 3.0 10 30 63 310 63 32	→			22 48	3.8	147	, 7. 5. 5. 8.	6.5	.20	4.5 25	150 190	. 1 £.	2000 130	280 140	
84-05-30 5.5 91 1.4 132 3.7 97 .10 46 340 78 140 75-02-18 3.1 26 3.2 97 4.6 8.0 .10 34 150 .19 2100 460 75-02-18 3.1 20 61 1.8 136 3.0 10 .20 43 210 .03 360 120 84-12-18 2.0 22 3.8 69 5.2 6.5 .20 57 150 2000 280 84-12-18 4.5 48 1.9 147 .8 6.4 .10 25 190 .31 130 140	-			3.0	40	!	2.2	3.4	<.10	6.6	24	i 1	1	2	04.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	⊣ (ry ω. xi w.	. 10	1 1	4.4	3.0	<.10 .00	12	35 24	: :	7	∵ :	.20
84-05-30 5.5 91 1.4 132 3.7 97 .10 46 340 78 140 75-02-18 3.1 26 3.2 97 4.6 8.0 .10 34 150 .19 2100 460 76-08-31 .20 61 1.8 136 3.0 10 .20 43 210 .03 360 120 84-12-18 2.0 22 3.8 69 5.2 6.5 .20 57 150 2000 280 84-12-18 4.5 48 1.9 147 .8 6.4 .10 25 190 .31 130 140 84-03-14 .45 3.0 .40 2.2 3.4 <.10	٠,			4.5	.50	10	0.	3.9	00.	12	53	.10	29	30	;
84-05-30 5.5 91 1.4 132 3.7 97 .10 46 340 78 140 75-02-18 3.1 26 3.2 97 4.6 8.0 .10 34 150 .19 2100 460 76-08-31 .20 61 1.8 136 3.0 10 .20 43 210 .03 360 120 84-12-18 2.0 22 3.8 69 5.2 6.5 .20 57 150 2000 280 84-12-18 4.5 4.6 1.9 147 .8 6.4 .10 25 190 .31 130 140 84-03-14 .45 3.0 .40 2.2 3.4 <.10	÷	_		3.1	.30	4	۲.2	3.9	<.10	10	-	1	77	<1	<.10
84-05-30 5.5 91 1.4 132 3.7 97 .10 46 340 78 140 75-02-18 3.1 26 3.2 97 4.6 8.0 .10 34 150 .19 2100 460 75-02-18 3.1 26 3.2 97 4.6 8.0 .10 34 150 .19 2100 460 75-02-18 3.1 1.8 136 3.0 10 .20 43 210 .03 360 120 84-12-18 2.0 22 3.8 69 5.2 6.5 .20 57 150 2000 280 84-03-14 .45 3.0 .40 2.2 3.4 <.10															

į	,			; ;		.20		۲.10	1	1		ŀ	!	;	1	;	25	. 20		1	;	;	.10	;	,	!	1	!	1
20) L	n	210	20		77	٠ ,٠	2	470	<10			202	560	540	100	~	23		75	¢10	190	17	30	>	9	250	20	09
(10 (10	1	~ [) 050	2 10 10		970	20		770	80	ć	002	700	540	510	780	16	1200		30	20	820	35	δ.	>	210	570	220	006
		1 1	00	2		!	.10	ŧ	90.	.02	S	3.6	70.	00.	. 22	. 31	· ;	1		ì	00.	.10	1	22	;	00.	00.	00.	.50
28	76	÷ ;	170	150		180	45	87	180	06	750	2 0	700	190	180	140	55	150		i	190	160	210	150	,	200	190	170	170
,		- ^-	, rt.	:5		50	50	19	51	34	27) (73	56	87	23	20	58		;	35	58	37	67		43	51	63	26
<.10	7) TO	10	. 20		. 10	<.10	< . 10	. 10	<.10	· ·		01.	01.	.20	. 30	<.10	.10	NUED	ì	. 20	. 20	.20	000		.20	. 30	. 20	.10
4.1	ŭ O(,	10	3.0		3.8	5.6	4.7	5.8	9.6	u -		· ·	6.4	6.0	7.8	6.3	6.7	1CONTINUE	5.0	2.6	4.2	3.2	ď) -	4.1	4.1	4.4	3.1
1.3	۳,	` \ \	3.0	6.2		8.6	<1.0	ω.	6.2	2.0	6) · ·	j i	7.2	8.4	2.4	2.9	6.4	FER UNIT	;	9.6	1.8	4(44	8	, c	x. x.	10	10	8 8
10	ν.	9	7/6	112		107	21	20	105	37	70	, ,	4 (107	100	58	21	73	AQUII	;	134	82	147	70	. (130	112	82	93
07'	20	9.	.,	3.5		<u>†</u>	1.7	1.6	2.5	2.8	77	; ~	, (3.6	2.7	4.7	1.7	3.0		;	. 70	5.6	.60	1.6		1.1	1.2	1.1	1.9
		77	22	24			•	5.3		10	~	77	i	, 4 4	34	17	6.7	21		1	62	31	89	***	Ç 7	40	52	75	44
.60										2.3	2.0	0	, , ,	O	3.1	1.6	1.3	2.3		1	1.7	2.7	.59	04.	ć	<u>ج</u>	.50	.50	. 60
75-07-02	84-05-21	84-05-21	74-04-05	74-03-05		84-05-30	74-03-07	84-05-24	75-02-13	75-03-20	75-09-17	75-09-22	76 00 36	10-03-64	76-07-23	78-09-26	84-03-25	84-05-30		74-03-05	75-02-03	79-06-15	84-03-28		72,03 22	(2-20-2)	72-03-23	73-06-01	78-09-11
35	67	69	16	~		7	33		35	36	36	36	·			04	14	\sim			35						23		
9	3E	4 E	Œ	5E	į	Ϋ́,	땅		4E	<u> 2E</u>	7E	₹	20	Š		9E	<u>æ</u>	4Ε		4E	4Ε	ΘE	3 7		٦ ت	a 1	۲ کئار د	3	o Fi
2S	33	45	78	78	ζ	ŝ	5S		<i>1</i> s	58	9	89	200	S.		es 9	58	78		28	7.8	es	78		γ	3 (ęş,	ęş	S
SH-37	SH-47	SH-52	L1-161	LI-166	T + +	/91-17	L.I169		LI-170B	LI-171	LI-172A	LI-1728	11-173	C11_17		LI-1768	LI-197	LI-198		LI-165	LI-170A	LI-186B	LI-196	11-93	1 1 2 1 5 2	777	LI-155	LI-160	L1-1/6A

TABLE 11. -- SELECTED COMMON CONSTITUENTS IN GROUND WATER IN LIVINGSTON AND ST. HELENA PARISHES -- CONTINUED

LOCAL WELL NUMBER	7. L	8 1	ATION R. SEC.	SAND	DEPTH OF WELL (FEET)	ALTITUDE OF LAND SURFACE (FEET)	DATE OF SAMPLE	SPE- CIFIC CON- DUCT- ANCE (µS)	FIELD PH (STAND- ARD UNITS)	TEMPER- ATURE ATURE (DEG °C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
							AQUIFER UNIT	IT 2					
LI-24	89		30	Ð	1300	47	67-02-16	272	8.4	;	ľ	C	20
LI-132	89 8	6E	Ξ:	D;	1360	50	69-11-25	564	7.8	25.0	, rv	7	1.0
1.T-53	S 4		Σ, <u>'</u>	⇒;	1520	847	72-03-16	566	8.6	26.5	. 2	3	.50
LI-57	89		ťχ	Σ ≥	1710	46	71-09-02	251	7.8	31.0	0	0	04.
	}		3	<u>.</u>	1900	40	68-06-19	253	%·7	29.5	5	3	.60
L1-58	Š	A.	0,7	ΣΣ	1900	94	71-10-18	1.	8.4	29.0	ţ	ŧ	1
)	3	}	E 1	1910	40	60-02-04	241	8.6	30.5	0	c	.80
11.80	t.	Č	2	≥ ;	1910	04	78-10-31	245	7.9	31.0	;	0	f i
11-80	200	بر بر	÷ ÷	Σ:	1490	99	84-12-12	244	7.9	27.0	0	2	9.
60.37	S	2	75	Σ	1620	58	83-08-10	222	7.2	29.0	17	7	.36
1.1-94	89	<u>SE</u>	39	×	1730	40	65-08-24	237	7.1	26.5	<u>~</u>	õ	7
LI-117	S.	ਸ਼	16	æ	2000		84-04-04	263	8.6	70 .	7.	`~	7.1
L1-127	s s	æ,	35	E	1880	07	68-01-19	261	7.8	\ . \ . 	ļ	† C	, do
171-171	3 3	3 (7	≅	1700		69-11-25	154	7.2	!	70,	24	8
L.L - 144	S.	ЭG	33	Σ	1730		63-08-56	279	8.5	31.0	0	0	. 20
LI-156	75	₩,	37	Σ	1750		72-05-04	274	89 12	1	0	*	L1
L1-159	s c	सु	10	Σ	1490		73-05-29	192		27.0	វិយ	÷ 2	10.7
LI-1/5	SO.	₹,	22	X	1860		76-09-20	267	8,6	29.5	ı, ıç	, 0	20
LI-178	89	9	27	Σ	1900	40	78-10-31	263	8.0	28.0	, c	· c	\$4. V
L1-105A	es es	30	04	Σ	1670		79-06-07	264	8.3	28.0	10 01	0	ć. 10
LI-193	89	39	40	Σ	1700		79-10-09	1 1	8.4	1	^	c	00
011 C	3	-		æ	1700		84-09-07	263	8.2	ł;	0	· ~	0.1
SH-338 SH-34A	\$ 4 4 8	4E 4E	4 5 5 5	نہ د	1590	146	73-03-19	138	6.3	26.5	Ω¢	19	5.8
			`	, _	1,750		73-03-06	137	٠٠ ٠٠	25.5	x 0 +	25	7.0
				1	1,340	140	73-03-23	137	6.2	25.5	œ	25	7.0

			CARBON, ORGANIC TOTAL (MG/L AS C)	t	5001	09.
3.1 h.3 7.0	.80 2.7 1.5	. 70 2.4 2.2 4.6	MANGA- NFSE. DIS- SOLVED (pG/L AS MN)	200	133	30 23 270 60
9 114 20 13	12 12 12 0	2 5 5 5 5 1 1 4 8 8 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	IRON, DIS- SOLVED (µG/L AS FE)	20 170 360 760 150	80 20 30 80	430 7 60 5600 80
∇	<i>∾∾</i> ∾∾∾	v 5 v 0 0 0	NITRO- GEN, NITRATE TOTAL (MG/L AS NO3)	1 200 1	1 1 1 0 1	1.00.
29.0 28.0 29.5 29.5	30.5	30.0	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	200 200 210 200 220	190	170 180 200 160 200
			SILICA, DIS- SOLVED (MG/L AS SIO2)	43 45 52 69	35 47 66	50 29 53 27
7.7 8.8 8.1 8 7.3 7.3 7.3	8.7 7.9 8.9 7.9 7.6	7.8.7.8 4.0.0.6.7.7.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	FLUO- BIDE. DIS- SOLVED (MG/L AS F)	UED . 30 . 40 . 30 . 20 . 20	.40 .30	.10 .20 .20 .20 .20
3 227 6 213 9 214 7 211 2 218	7 341 3 9 237 5 312 1 261	2 240 3 240 3 240 5 252 5 245 5 245	CHLO- RIDE. DIS- SOLVED (MG/L AS CL)	CONTIN 6.0 3.7 4.0 3.3 4.8	4.6	33.5
66-12-13 60-01-26 68-07-09 84-09-07 84-12-12	62-09-07 67-02-23 68-06-19 68-06-25 66-09-21	66-11-22 66-12-13 72-03-13 74-03-05 84-12-12 84-10-05	SULFATE DIS- SOLVED (MG/L AS SO ⁴)	AQUIFER UNIT 2CONTINUED 25 8.4 6.0 31 9.4 4.0 26 8.2 3.3 27 28 9.4 4.8	19 8.8 8.8	6.8 10 8.6 6.6
33 40 40 40 40	15 51 7 7 8	44 72 72 74 74 74 74 74 74 74 74 74 74 74 74 74	ALKA- LINITY FIELD (MG/L AS CACO3)	AQUIF 125 129 131 120 122	110	102 125 121 70 134
2140 1920 1920 1920	2710 2100 2100 2640 2240	2170 1840 2160 2060 1900 1830	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	.30 1.2 .20 .30	19.18.9.	1.5 .60 .20 2.9 .80
		ם חוח חוח	SODIUM, BIS- SOLVED (MG/L AS NA)	63 67 61	55 54 54	41 60 61 26 70
30	40 48 58 30	18 24 24 44	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	.10 .40 .000 .000 .40	.20	1.3 .11 .00 .80
6E 5E	4E 4E 4E	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	į l	.16 -16 -19	-18 -04 -31 -12 -10	24 04 04 119 25 29
7s 6s	88 68 88 68	68 68 68 68 68	DATE OF SAMPLE	67-02-16 69-11-25 72-03-16 71-09-02 68-06-19	71-10-18 60-02-04 78-10-31 84-12-12 83-08-10	65-08-24 84-04-04 68-01-19 69-11-25 69-08-29
73	38	LI-111 LI-125 LI-153 LI-163 LI-199 LI-204C	ON SEC.	30 11 59 45 25	40 49 12	39 16 35 39
LI-54 LI-73	LI-88 LI-92 LI-100 LI-102	LI-111 LI-125 LI-153 LI-163 LI-199 LI-2040	LOCATION . R. Si	4E 6E 2E 3E 3E	3E 3E 3E	5E 3E 6E
			LOC T.	68 68 68 68 68	6s 5s 6s	6s 6s 6s 6s
			LOCAL WELL NUMBER	LI-24 LI-132 LI-154 LI-53 LI-57	LI-58 LI-80 LI-89	LI-94 LI-117 LI-127 LI-131 LI-144

TABLE 11. --SELECTED COMMON CONSTITUENTS IN GROUND WATER IN LIVINGSTON AND ST. HELENA PARISHES -- CONTINUED

75 3E 72-05-04	LOCAL WELL NUMBER	LOCATI T. R.	~	ON SEC.	DATE OF SAMPLE	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	POTAS- SIUM, DIS- SOLVED (MG/L	ALKA- LINITY FIELD (MG/L AS	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE. DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L	SILICA, DIS- SOLVED (MG/L AS	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED	NITRO- GEN. NITRATE TOTAL (MG/L	IRON, DIS- SOLVED (uG/I.	MANGA- NESE, DIS- SOLVED	CARBON, ORGANIC TOTAL
15 15 17 17 17 18 19 19 19 19 19 19 19				7		AS MG)	AS NA)	AS K)	CACO3)	AS 504)	AS CL.)	AS F)	S102)	(MG/L)	AS NO3)	AS FE)	AS MN)	AS C)
Secondary Color Secondary									AQUIF	ER UNIT 2	contin	UED						
6.5 SE 27 76-09-20	LI-156 LI-159	7S SS	된 4		72-05-04		99	09.	138	9.6	4.4	. 10	23	190	00.	10	20	<i>i</i>
65 6E 7 70-10-31 70 30 4.1 < 10 54 230 .00 < 10	LI-175	89	, t		76.00.20		ξ;	2.5	6g :	11	5.2	. 20	56	170	.20	1200	950	1
A SS GE 40 77-10-31 (2.10) COLOR 123 (11) 1.0	LI-178	S S	रे स	27	78-10-21	2 :	25	<u>۾</u>	140	9.0	4.1	<.10	24	230	00.	<10	<10	;
65 66 60 79-10-09	LI-186A	s _s	9 E	047	70-90-62	7.10	00 09	9. ?	123	= :	1.0	.20	34	180	.19	70	30	1
45 46 47 47 47 47 48 47 47 48 48 49 10<	, ,	į	ļ		2	2	3	04.	115	71	1.0	. 20	32	180	80.	40	20	}
45 4E 45 73-03-19 1.1	LI-193	es es	<u>ਬ</u> 9	07	79-10-09	· 04	61	!	120	10	1.9	. 20	30	180	;	120	:	
4.5 4E 45 73-03-19 1.1 23 1.7 57 8.2 3.8 .20 63 140 .00 1000 240 240 45 4E 45 73-03-6 1.8 19 2.5 59 7.2 3.7 .20 58 140 .00 740 220 540 57-03-23 1.8 19 2.5 59 7.2 3.7 .20 58 140 .00 740 220 540 55 50 01-26 .80 42 1.3 98 .8 4.4 .40 .40 50 160	000 H	7	1	1	84-09-07	.10	63	. 20	;	11	2.0	.30	32	180	60.	20	: 4	¦
75 6E 2 6-12-13 1.8 19 2.5 59 7.2 3.7 20 58 140 .00 740 220 75 6E 2 6-12-13 1.8 19 2.5 59 7.2 3.7 20 58 140 .00 740 220 75 6E 2 6-12-13 .30 49 2.3 103 8.8 4.1 .10 45 170 200 65 5E 36 6-01-26 .80 46 1.0 99 8.6 3.4 .20 58 180 310 <t< td=""><td>aCC-uc</td><td>0 0</td><td>ង ភ្ញុំ [</td><td> √ ι</td><td>73-03-19</td><td></td><td>23</td><td>1.7</td><td>57</td><td>8.2</td><td>3.8</td><td>. 20</td><td>63</td><td>1.40</td><td>00</td><td>1000</td><td>270</td><td>01.</td></t<>	aCC-uc	0 0	ង ភ្ញុំ [√ ι	73-03-19		23	1.7	57	8.2	3.8	. 20	63	1.40	00	1000	270	01.
75 6E 2 66-12-13	n - 246	2	괴	47	73-03-06	8. 9	19	2.5	29	7.2	3.7	. 20	58	140	00.	740	220	ŧ ;
75 6E 2 66-12-13 30 49 2.3 103 8.8 4.1 .10 45 170 200 65 5E 30 60-01-26 .80 42 1.3 98 .8 4.1 .40 50 160 -					/3-03-23	۳. ع	19	2.5	59	7.2	3.7	. 20	58	1.40	00	740	220	
65 5E 30 60-01-26 .80 42 1.3 98 .8 4.4 4.0 50 140	,I-54		3 9		66-12-13	.30	64	2.3	103	α	7	ç	7,5			6		
8S 4E 40 1.0 99 8.6 3.4 20 58 180 310 84-09-07 70 44 1.3 7.6 3.4 20 58 180 310 80 260 250 230 250 230 250 230 250 230 250 230 250 230 250 230 250 230 250 230 250 230 250 230 250 230 250 230 250 230 250 230 250 230 250 230 250 250 230 250	I-73		5E		60-01-26	.80	42	·~	80	ς α	7 7	07,) E	170	1 1	200	:	!
85 4E 40 62-09-07 70 44 1.3 7.6 3.8 30 62 190 .12 880 260 .85					68-02-09	.60	917	1.0	66	9.8	. 4.	20.	× %	5 £	: (! ?	;	!
85 4E 40 62-09-07					84-09-07	. 70	44	.,	\	7 . 0		0,7	2 (207	1 (310	1	<i>{</i>
85 4E 40 62-09-07 .50 80 .80 162 10 4.0 .20 18 220 7.3 .20 190 0 250 65 3E 4B 67-02-23 52 -90 94 7.3 .20 190 0 250 8S 4E 5B 68-06-19 1.3 54 .80 115 11 3.8 .20 40 180 150 150 150 150 160 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 <td></td> <td></td> <td></td> <td></td> <td>84-12-12</td> <td>.60</td> <td>45</td> <td></td> <td>95</td> <td>7.8</td> <td>. w.</td> <td>.20</td> <td>56 56</td> <td>190 180</td> <td>.03</td> <td>880 750</td> <td>260 230</td> <td>.30</td>					84-12-12	.60	45		95	7.8	. w.	.20	56 56	190 180	.03	880 750	260 230	.30
8S 4E 58 68-06-25 .10 76 .40 154 .11 3.8 .20 190 0 250 8S 4E 58 68-06-25 .10 76 .40 154 .11 3.8 .20 40 180 150 -	1-88				62-09-07	.50	80	.80	162	10	4.0	. 20	18	220	1	i i		
8s 4E 58 68-06-25 .10 76 .40 154 11 3.8 .20 40 180 150	76-1				6/-02-23	1	52	- 90	1/6	i	7.3	. 20	ţ	190	: :	C	250	! :
6S 4E 30 66-09-21 .10 61 .40 120 12 3.6 .40 47 200 40 570 68 4E 18 66-11-22 .10 61 .40 120 12 3.6 .40 51 200 570 570 68 4E 24 66-12-13 .00 56 11 114 10 4.7 .40 51 200 910 910 68 4E 34 74-03-05 .30 58 140 121 8.6 2.0 .20 49 190 .10 60 90 65 4E 24 84-12-12 .50 51 1.4 109 9.0 3.5 .20 55 190 .01 160 250 68 3E 4 84-10-05 .60 50 1.5 110 6.6 3.8 .30 51 180 .08 90 210	1-100				68-06-19 58-06-25	1.3	54	8.	115	7.2	3.8	. 20	40	180	1	150	2 !	: :
6S 4E 18 66-11-22 .10 61 .40 10 4.7 .40 51 200 570 65 4E 24 66-12-13 .00 56 11 114 10 4.4 .10 38 190 910 65 52 59 72-03-13 .20 59 122 6.8 4.2 .40 41 190 .00 430 200 6S 4E 24 84-12-12 .50 51 1.4 109 9.0 3.5 .20 55 190 .10 60 90 6S 4E 24 84-12-12 .50 51 1.4 109 9.0 3.5 .20 55 190 .01 160 250 65 3E 4 84-10-05 .60 50 1.5 110 6.6 3.8 .30 51 180 .08 90 210	I-102				25.00.00	2 4	٥,	.40	154		3.8	. 20	21	210	1	04	1	!
6S 4E 18 66-11-22 .10 61 .40 10 4.7 .40 51 200 240 65 4E 24 66-12-13 .00 56 11 14,10 10 4.4 .10 38 190 910 910 65 2E 59 72-03-13 .20 59 122 6.8 4.2 .40 41 190 .00 430 200 6S 4E 24 84-12-12 .50 51 1.4 109 9.0 3.5 .20 55 190 .01 160 250 65 3E 4 84-10-05 .60 50 1.5 110 6.6 3.8 .30 51 180 .08 90 210	i > <				00-09-61	01.	61	04.	120	12	3.6	04.	47	200	1	570	1	;
6S 4E 24 66-12-13 .00 56 11 114 10 4.4 .10 38 190 910 65 2E 59 72-03-13 .20 59 .80 122 6.8 4.2 .40 41 190 .00 430 200 6S 4E 34 74-03-05 .30 58 .40 121 8.6 2.0 .20 49 190 .10 60 90 6S 4E 24 84-12-12 .50 51 1.4 109 9.0 3.5 .20 55 190 .01 160 250 6S 3E 4 84-10-05 .60 50 1.5 110 6.6 3.8 .30 51 180 .08 90 210	I-111				56-11-22	.10	61	07.	!	10	4.7	.40	7.	200	;	070		
6S 2E 59 72-03-13 .20 59 .80 122 6.8 4.2 .40 41 190 .00 430 2-0 65 4E 34 74-03-05 .30 58 .40 121 8.6 2.0 .20 49 190 .10 60 90 6S 4E 24 84-12-12 .50 51 1.4 109 9.0 3.5 .20 55 190 .01 160 250 . 68 3E 4 84-10-05 .60 50 1.5 110 6.6 3.8 .30 51 180 .08 90 210	1-125				56-12-13	00.	26	11	114	10	7 7		38	200	l I	0.0	1	!
6S 4E 34 74-03-05 .30 58 .40 121 8.6 2.0 .20 49 190 .10 60 90 6S 4E 24 84-12-12 .50 51 1.4 109 9.0 3.5 .20 55 190 .01 160 250 6S 3E 4 84-10-05 .60 50 1.5 110 6.6 3.8 .30 51 180 .08 90 210	1-153				72-03-13	.20	59	.80	122	6.8	4.2	04.	, 41	190	. 0	0167	100	1
6S 3E 4 84-10-05 .60 50 1.5 110 6.6 3.8 .30 51 180 .08 90 210	1-103 1-100				74-03-05	.30	58	07.	121	9.8	2.0	. 20	61/	190	. 10	3	007	1
30 51 180 .08 90 210 6.6 3.8 .30 51 180 .08 90 210 50 51 50 50 50 50 50 50 50 50 50 50 50 50 50	1-204C				54-12-12 14 10 or	.50	51	1.4	109	9.0	3.5	.20	55	190	.01	160	250	- 10
) } }		ž	,	4-10-05	09.	50	1.5	110	9.9	3.8	.30	51	180	80.	96	210) I

LOCAL WELL NUMBER	Lo T.	LOCATION	CATION R. SEC.	SAND	DEPTH OF WELL (FEET)	ALTITUDE OF LAND SURFACE (FEET)	DATE OF SAMPLE	SPE- CJFIC CON- DUCT- ANCE (µS)	FIELD PH (STAND- ARD UNITS)	TEMPER- ATURE ATURE (DEG °C)	COLOR (PLAT- INUM- COBALT UNITS)	HARD- NESS (MG/L AS CACO3)	CALCTUM DIS- SOLVED (MG/L AS CA)
							AQUIFER UNIT	IT 3					
SH~5	28	5E	59	D E	1680	220	68-06-20	279	80 c	28.0	īυģ	0 (00.
SH-7	S7	€ E	51	ממ	2080	124	78-10-25	337	8,9	30.0	00	∽ ~	36.
SH-18	38	39	28	n	1960 1960	205 205	67-01-11 84-03-22	330	9.4	25.0 26.5	10 16	120	1.0
SH-21	2S	<u> 2</u> E	34	Ω	1600	250	67-12-05	}	7.9	!	10	0	;
				Ω	1600	250	84-03-21	301	9.6	26.5	6		. 28
SH-30 SH-33A	5 to 7	4E 4E	12 4 ፍ	n =	1860	155 146	69-12-20	448	φ.α 0.4	26.5	ινς	7	. 70
SH-34B	4S	4E	45	o D	1800	146	73-03-29	386	8.7	27.0	2 2	: -#	C: 1 0. 1
				n	1800	346	84-03-22	454	8.9	28.0	14	~	0,
SH-36	2S	5E	59	n	1590	200	73-05-21	279	0.6	26.5	10	4	1.6
LI~46B	\$ \$	ž E	45	o ::	2520	50°.	72-05-04	423	, «	23.0	<u></u>	> «	0۶۰ د د
11-56	78	2E	89	b	2610	39	72-05-04	318	8.6	i	0	> ~	1.0
LI-151 LI-184B	89 88	3E 6E	36 40	ממ	2570	35	72-02-04 79-05-29	205 218	7.2	32.0	₹0	17	5.0
LI-185	78	3E	38	Ω	2610	37	84-09-07	265	8.6	31.0	0	10	4.0
11-189	58	99	1	Ð	2340	1/8	79-10-02	261	8.5	29.0	0	17	1.0
LI-190	58	9E	11	Ω	2150	7/8	79-10-17	234	8.3	28.0	0	12	3.5
LI-192	58	6 Е	11	n	2150	7/8	80-04-28	227	i i	;	0	13	5.0
				ກ	2150	84	80-05-05	;	ì	31.5	i)	1
LI-204B	89	3E	4	n	2600	09	84-08-17	;	7.4	31.0	l ;	σ	2.6
				n	2600	60	84-08-23	1	7.5	31.0	1	10	3.2
SH-9	5S	4E	73	'n	2130	165	60-06-28	430	8.0	28.5	30	77	;
				ب	2130	165	61-06-16	416	7.7	28.5	20	Ą	
SH-32B	5S	4Ε	77	_1	2010	205	70-09-15	367	8.2	1	10	~	· ~
LI-91	89	3E	32	ר	3080	44	64-03-23	998	8.7	35.5	70	, m	1.0
LI-184A	89	6 E	07	J	2930	01/	79-05-21	515	9.1	33.5	10	0	<.10

TABLE 11. --SELECTED COMMON CONSTITUENTS IN GROUND WATER IN LIVINGSTON AND ST. HELENA PARISHES--CONTINUED

															2017		
LOCAL WELL NUMBER	T.	LOCATION . R. S	SEC.	DATE OF SAMPLE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS NO3)	IRON. DIS- SOLVED (µG/L AS FE)	MANGA- NESE, DIS- SOLVED (µG/L AS MN)	CARBON, ORGANIC TOTAL (MG/L AS C)
								AQUIF	AQUIPER UNIT 3	3CONTINUED	UED						
SH-5	2S	; 5E	59	68-06-20		69	.20	141	00	2 2	ç	γc	0				
SH-7	45	39 :	51	83-08-10 78-10-25	.07	68 8 8	.30	141	2 4 -		5.05	26 32	190 200	} I	- - 50	ļ ~	: !
SH-18	38			67-01-11		86	5.05.	150	4.0	1.6	.40	24	210	.30	20	<10 <10	-
				84-03-22	60.	76	.30	203	12	4.0	. 50	25	260 260	: :	30	~	·
SH-21	2S	5E	34	67-12-05	1.5	69	99.	138		5.1	09:	1	}	;	20	0	; ; ;
SH-30	45			69-12-20		117	કે ડ	150	ж ж	3. 8	.40	31	210	i	13	9	.50
SH-33A	8 h		45	73-03-06		380	2 G.	212	4.6	ب م د	.50	61	300	00.	190	350	· I
SH-34B	4S	4E	45	73-03-29	.40	76	.90	194	8.4	6.4	3.6 .60	28	930	.10	70	<10	ŧ
				84-03-25	.18	110	9	326	o		ć	;	<u>}</u>	?	2	017	!
SH-36	25	<u>5</u> Е	29	73-05-21	~	99	. 20	25	ο α ο · α	ب ب ب	æ. &	24	290	1	6	11	.90
3H-44	2 Y			84-03-20		66	.30	201	7.17	2.4 5.5	07.	31 19	200 260	.10	8 4	(10 g	; 6
LI-56	38	2E	68	72-05-04	800.	62 82	8 6	130	9.2	4.3	.10	37	190	00.	10	40	? :
						!	<u>.</u>	<i>101</i>	n r	٠. پ	. 20	23	230	00.	017	20	1
LI-151 LI-184B	sy Sy	3E 6E	36 40	72-02-84	1.1	41	2.5	26	8.2	3.7	. 20	69	190	00	920	220	
LI-185		35	38	84-09-07	27.	20	04.	98	9.9	2.2	.30	74	190	90.	470	<10	1 }
LI-189	58	<u>б</u> Е	, T	79-10-02	04.	209	ý.	128	2.7 80 0	5.0	.30	31	190	.16	10	30	. 20
LI-190	58	9 9	11	79-10-17	.80	64	1.0	115	6.2	2 2 2 3	00.	* 60 3*	190 200	ر. در در	20	0 0	1
LI-192	58	6 E	11	80-04-28	.10	78	1.0	105	α.	, 	Ş			· .	3	2	i I
100	Š	į		80-05-05	{	!	; ;) i	7	02.	65	190	۲۹.	240	69	;
L1-204B	89	3E	4	84-08-17	9.	50	1.1	i	8.0	1.1	; e.	62	190	! =	60	1 0	1
6-HS	2S	4E	73	60-06-28	٠ کر	45	0.1	98	8.2	4.0	.30	62	180	.30	240	80 80	i i
		Ì		7-00-00	(!	į	j j	1	6.0	;	1 1	ł	. 1	1	; ;	1
SH-32B	2S	4E		61-06-16	. 20	96	1.2	i		4.9	. 70	11	250	;	!	ļ	;
LI-91	9	3E	35	64-03-23	3.1.	220	0, 0	107	9.5	4.5	.60	17	240	.10	250	120	: 1
LI-184A	s9	E		79-05-21	<.10	120	20.	757		7 (8 5	23	580	1	} .	1	!!
								572		۲.۷	٧٢.	23	300	.10	07	<10	i

TABLE 12. --SELECTED MINOR ELFMENTS AND RADIONUCLIDES IN GROUND WATER AT SELECTED SITES IN LIVINGSTON AND ST. HELFNA PARISHES

[µG/L., MICROGRAMS PER LITER; PCI/L, PICOCURIES PER LITER]

	MERCURY D1S- SOLVED (µG/L AS HG)		-	; ;		•	}			<. 1			. "	1 :			· ·	!		.	۲.	<u> </u>
	LEAD, DIS- SOLVED (µG/L AS PB)		***	• • <u>~</u>	~ ~	7	1	ſΛΨ		7		^	, ~	, ,	- 12		-	;	trof -	t	9 1	۲
	COPPER. DIS- SOLVED (µG/L AS CU)		7	; ;;	16	-	!	13 6		ſΛ		τ	₽₽	; ;	J —		т	;	_ ,	- m	 (V
,	CHRO- MIUM, DIS- SOLVED (µG/L AS CR)		<10	¢10	0 0		l i	(10 (10		<10		<10	<10	; (<10		<10	;	<10	10	<10 30	57
The state of the s	CADMIUM DIS- SOLVED (pG/L AS CD)		Ç	÷ 5	5 5		1	22		Ş		~	<u>.</u>	1 6	7 🗅		~	1 1	∵ ;	7 5	₹ 5	ij
	BORON, DIS- SOLVED (µG/L AS B)	FER UNIT	01/	30	<20 <20		1	<20 <20	I LIN	01/	NIT 2	<20	520	- 0	3 8	VIT 3	30	i T	180	360	180 250	VC 4
	BARTUM, DLS- SOLVED (µG/L AS BA)	SHALLOW AQUIFER UNIT	1	ŀ	1 F		t I	1 1	AQUIFER UNIT	1	AQUIFER UNIT	53			6	AQUIFFR UNIT	28	;	1 1	:	1 1	
	ARSENIC DIS- SOLVED (µG/L AS AS)	IS	€	_* -	7 5	i	•	- ∵		₽		~	\ \	¦ -	· 🗢		41	F 1	∵ ∵	. ~ ∙		(
	ALUM- INUM, DIS- SOLVED (µG/L AS AL)		<10	010 010	<10	ļ	: C	<10 <10		<10		10	<10		30		20	ļ	<u>110</u>	<10	10	
The second secon	DATE OF SAMPLE		84-05-30	84-05-30	84-03-22	84-03-14	84. 00 00	84-05-21		84-03-28		20-60-78	84-03-26	84-04-04	84-09-07		84-09-07	83-08-10	84-03-22 84-03-21	84-03-22	84-03-20 84-03-21)
	on SEC.		16	41.	1.4	~) ¢	67		35		30	ر	16	40		38	62	3° 58	45	27	
	LOCATION T. R. SEC.		5E	5 E	3E	r. Fr	(() ()	36 3E		4E				Ус 5Е			3Е		, 5E		7 E	
	3.5		86	6s 5s	58	2	· ~	38		78		89	88 S	2 2 2 3	9		2Z			S 77		
	LOCAL WELL NUMBER		LI-85	LI-167 LI-169	LI-197	SH-12	SH-16	24-HS		11-196		L1-73	LI-86	LI-117	LI-193		LI-185	SH-5	SH-18 SH-21	SH-34B	99-HS	

TABLE 12.--SELECTED MINOR ELEMENTS AND RADIONUCLIDES IN GROUND WATER AT SELECTED SITES IN LIVINGSTON AND ST. HELENA PARISHES--CONTINUED

LOCAL WELL NUMBER		8 1	LOCATION R. SEC.	DATE OF SAMPLE	SILVER, DIS- SOLVED (PG/L AS AG)	ZINC, DIS- SOLVED (µG/L AS ZN)	ALPHA, DIS- SOLVED (µG/L AS U-NAT)	BETA. DIS- SOLVED (PCI/L AS CS-137)	BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)
				/HS	SHALLOW AQUIFER UNIT	ER UNIT			
LI-85	98	<u> 5</u> E	16	84-05-30	~	7	;	;	;
LI-167 11-169	6S 5	5 E	41	84-05-30	ا ر	,220	;	1 1	1
LI-197	58	3E	27 14	84-03-22	∵ ∵	o o	.1 1	: :	1 t
SH-12	18	35	٣	84-03-14	į i	}	۶	α	1
SH-16 SH-47	3s	бе 5в	10 49	84-03-20 84-05-21	∵ ∵	64	8:	> v~(]	1.0
, jo	ţ	2	į		AQUIFER UNIT !	 F-			
061-17	Ç	화 과	£	84-03-28	-	2	<\tag{4.0}	<2.3	<2.0
					AQUIFER UNIT 2	3 2			
LI-73	S 9	<u>3</u> E	30	84-09-07	₽	****	1	;	1
LI-86	86	5E	ر ر	84-03-26	grow	51	<13	(8.3	<7.1
LI-117	78	5. E.	16	83-08-10	1 ~	15	<2.6	<1.4 3.5	<1.2
LI-193	s 9	99	40	84-09-07	· ~) ©	5	0.2)	
					AQUIFER UNIT 3	€			
LI-185	78	36	38	84-09-07	····	*/	;	;	1
SH-5	25	ሊ / ቪ	59	83-08-10	;	1	(2.9	<1.7	<u>^</u> ռ
SH-18 SH-21	35 SS SS	ර සි සි	28 34	84-03-22	Δ.	\$	(5.5	(3.0	(2.6
H-34B	57	1 T	 	84.03.22	,	ν (1	1	:
SH-44	\$ 1	7 E	12	84-03-20	~ 5	Φ.	66.3 66.3	3.6	<3.1 23.1
SH_KK	i				;	-			

TABLE 13.--SELECTED ORGANIC CHEMICALS, INSECTICIDES, AND HERBICIDES IN THE SHALLOW AQUIFER UNIT IN LIVINGSTON AND ST. HELENA PARISHES

[µG/L, MICROGRAMS PER LITER]

LOCAL WELL NUMBER	LOCATION T. R. SEC.	DATE OF C. SAMPLE	PCB. TOTAL (µG/L)	ALDRIN. TOTAL (µG/L)	CHLOR- DANE, TOTAL (pG/L)	DDD, TOTAL (µG/L)	DDE, TOTAL (pG/L)	DDT, TOTAL (µG/L)	DI- AZINON, TOTAL (uG/L)	DI- ELDRIN TOTAL (uG/L)	ENDO- SULFAN, TOTAL (uG/L)
LI-85	∑E	6 84-05-30	·.1	<.001	, ;	<.001	<.001	<. 001	, 01 , 01	001	001
LI-167	4 35 S9	41 84-05-30	<.1	<.001	<.1	<.001	<.001	<.001	(.01		<.001 <.001
LI-169	6 Е	39 84-05-24	<.1	<.001	<.1	<.001	<.001	<.001	<.01	<.001	<.001
LI-197	Э Э		<.1	<.001	. .1	۲.001	<.001	<.001	<.01	<.001	<.001
SH-12	1S 5E	3 84-03-14	<.1	<.001	<.1	<.001	<.001	<.001	<.01	<.001	<.001
SH-16	<u>е</u> Е		<.1	<.001	<.1	<.001	<.001	<.001	<.01	<.001	<.001
SH-47	3s 5E 4	49 84-05-21	<.1	<.001	< . 1	<.001	<.001	<.001	<.01	700.	<.001
SH-52	년 4		`. •	<.001	,	¢.001	<.001	<.001	<.01	<.001	<.001
10001		C C C C C C C C C C C C C C C C C C C	MICHAEL		HEPTA-	HEPTA- CHLOR		MALA-	METH- OXY-	METHYL PARA-	METHYI, TRI-
WELL	LOCATION	DATE	ENDKIN, TOTAL	. ETHION. TOTAL	TOTAL	FPOXIDE	LINDANE	THION, TOTAL	CHLOR,	THION,	THION,
NUMBER	T. R. SEC.	C. SAMPLE	(µG/L)	(µG/L)	(pg/L)	(hg/L)	(µG/L)	(hg/F)		(µG/L)	(µG/L)
LI-85	3E		<.001	<.01	<.001	<.001	<.001	<.01	<.01	<.01	,01 10
LI-167	6S 5E 41		<.001	<.01	<.001	<.001	<.001	<.01	<.01	<.01	<.01
LI~169		84-05-24	<.001	<.01	<.001	<.001	<.001	<.01	<.01	<.01	<.01
LI-197	3E		<.001	۲.01	<.001	<.001	<.001	<.01	<.01	<.01	<.01
SH-12	1S 5E		<.001	<.01	<.001	<.001	<.001	<.01	<.01	<.01	<.01
SH-16	9 8		<.001	<.01	<.001	<.001	<.001	<.01	<.01	<.01	<.01
SH-47	3S 5E 49	9 84-05-21	<.001	Ç.01	.001	.001	<.001	<.01	<.01	<.01	<.01
50-15	4 :)		7.00.	D.	۲.001	(00.	.003	<.01	\ .01	<.01	<.01

TABLE 13.--SELECTED ORGANIC CHEMICALS. INSECTICIBES, AND HERBICIDES IN THE SHALLOW AQUIFER UNIT IN LIVINGSTON AND ST. HELENA PARISHES--CONTINUED

SILVEX. TOTAL (µG/L)	, 01	90.	<.01 .03	70.	<.01	<.01	<.01	<.01
2.4.5-T TOTAL (µG/L)	<.01	<.01	<.01 .03	ĭ0.,	<.01	<.01	<.01	<.01
2,4-D, TOTAL (µG/L)	.16	.12	.0. .03	TO: ,	10.	<.01	<.01	<.01
TOTAL TRI- THION (µG/L)	۲۰۰۱	<.01	<.01 10.01	10.	.0.	٠. ١٥	<.01	<.01
TOX- APHENE, TOTAL (µG/L)	\	♡	₹ \$	Σ .	7 ;	7	₽	7
PER- THANE TOTAL (pG/L)	 	<.1			;;	Ţ.,	.,	· . 1
PARA- THION, TOTAL (µG/L)	۲.01	<.01	<.01 <.01	, D1	, , , , , , , , , , , , , , , , , , ,	,	ĬŎ.	(.0]
NAPHTHA- LENES, POLY- CHLOR. TOTAL (µG/L)	۲.10	<.10	<.10 <.10	<.10	<.10		2 ;	(· 10
MIREX, TOTAL (µG/L)	<.01	<.01	<.01 <.01	4.01	<.01	5	01	7.
DATE OF SAMPLE	84-05-30	84-05-30	84-03-22	84-03-14	84-03-20	84-05-21	84.05.21	04-07-61
LOCATION T. R. SEC.	9S 5E 16	ر با را	3E		4S 6E 10	E E		,
LOCAL WELL NUMBER	LI-85	1.1-169	LI-197	SH-12	SH-16	24-47	SH-52	,

GEOHYDROLOGIC SECTIONS A-A', B-B', AND C-C' IN ASCENSION, LIVINGSTON, ST. HELENA, AND TANGIPAHOA PARISHES, SOUTHEASTERN LOUISIANA

4.	•				

•					
•	· ·				
	* * * * * * * * * * * * * * * * * * *				
	•				
•					
·	•				
e.	•				
	,				
	•				
- August					
• •	, F. j.				
•					
	• .				
	:				
	•				
	. •				
	-				
	·•				
	·.				
. •	×.				
*	•				